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The Wawve, the Cylinder, and the Plate

SANJAY GOVINDIJEE

University of California
Lawrence Livermore National Laboratory
PO Box 808, L-122
Livermore, CA 94550

§ Abstract

In this report, a simple fluid-structure interaction problem is proposed as a benchmark
test for fluid—structure codes. The report details the solution to the problem of a plane
wave scattering off an elastic cylinder with internal structure in an acoustic medium. The
particular system analyzed is an infinitely long cylinder with an internal hinged plate,
and as such, the problem is two dimensional in nature. The analysis sets up the basics
of acoustic scattering from elastic structures and then proceeds to develop the particular
solution for the chosen structure. The complete solution to the steady state problem is
developed in terms of harmonic series in the polar angle. The final expressions are in terms
of infinite series over the cylindrical shell harmonics and permit comparisons and validation
of results from numerical techniques such as finite difference and finite element methods.
It is noted that the geometry, although simple, embodies some of the main features of more
complicated problems and thus makes the given problem suitable for use in benchmarking
and verification.
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§1. Introduction

The general problem of fluid—structure interaction is a very complicated coupled initial
boundary value problem. Analytic techniques, though able to provide insight and/or full
solutions to many particular problems, are often incapable of accurately handling irregular
structural features. One proposal for handling more general fluid-structure interaction
problems is the use of finite element or finite difference methods. As a means of bench-
marking and validating such procedures, a simple test problem is proposed and solved
analytically in this report. The chosen problem is designed to be geometrically simple yet
complex enough to embody some of the main coupling features that a fluid-structure code
would have to capture.

The system analyzed consists of a plane wave striking an infinite cylinder submerged
in an infinite acoustic medium. The cylinder is of radius R, with density p, and thickness
hs. There is an internal hinged plate at angle 8,. The plate has thickness h, and density
pp- The material response of the plate and the shell is elastic with elastic constants (Ep,
vp) and (E,, v,) respectively. After the plane wave strikes the cylinder it causes scattered
waves to be generated. The purpose here is to calculate the scattered waves. See Figure
1.1.

To perform the calculation, the problem is broken up into several smaller problems.
First the problem is broken up into the problem of an incident plane wave scattering off
a rigid target. Then a particular elastic target problem is solved and combined with this
rigid target result to generate the scattered field from an elastic target under the influence
of a plane wave. The setup of the scattering problem follows directly from the monograph
of JUNGER AND FEIT [1972]. In what follows, this work is cited for many results and much
material is repeated to make the presentation as self contained as is reasonably possible.
The method of Lagrange multipliers is used to generate the normal modes of vibration of
the shell-plate structure; the elasticity analysis closely mirrors the work of BJ ARNASON,
ACHENBACH, AND IGusa [1992].

§2. Pressure Decomposition

The goal is to develop the expression for the pressure field in the acoustic medium
as a function of position and time. Because of the linearity of the systems involved, the
problem may be decomposed into the sum of several simpler problems. First, the total
pressure response is written as

p=p+p*, (2.1)
where p' is the incident plane wave pressure field and p°¢ is the scattered pressure field.
The scattered field is further decomposed into two parts:

pse — pSOO + pr’ (22)

where p®® is the scattered pressure field from an equivalent rigid target and p” is the
contribution to the scattered pressure field due to the target’s elasticity which is sometimes
termed the radiated field.
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FIGURE 1.1. Problem Geometry

§3. Rigid Scatter

Begin by considering the case of a rigid cylinder. Decompose the total pressure field
into two parts: the incident pressure and the scattered pressure; i.e.

p=p +p">, (3.1)

where the superscript co is to remind the reader that this is the scattered pressure field
when the cylinder has an infinite impedance. Based on the geometry shown in Figure 1.1,
the incident pressure field may be written as

p' = Plexpli(k - r — wt)], (3.2)

where P? is the magnitude of the incident wave, i is the imaginary unit, ¢ is the position
vector, w is the frequency of the incoming wave, ¢ is the time, and the wave vector k = ke,
where e, is the unit vector in the x—direction.
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Remark 3.1.

The linearity of the governing equations involved affords us the convenience of using
complex number notation. By using the complex number representation to the inci-
dent pressure field, two boundary value problems end up being solved. If the solution
to the complex input p* is denoted by ¢, then Re{(} is the solution to the input Re{p*}
and Im{(} is the solution to the input Im{p'}. [

Remark 3.2.
In what follows the always present exp[—iwt] will be omitted for notational clarity. In
cases where the inclusion of this term will aid in the clarity of the presentation, it will

be utilized. [

All the quantities in the incident pressure field are known. To calculate the rigid
scatter pressure field, the momentum balance equation must be solved. This equation is
given by

Vp= —pri, (33)

where py is the density of the fluid and u is the fluid displacement. Because the cylinder
is assumed to be rigid
U, =u(Rs)-n=0, (3.4)

where n is the cylinder normal. Therefore, the boundary condition for the scattered field
is given by

u(Rs) = ~up(R,) (3.3)

and likewise for the accelerations. Utilizing the momentum balance equation this may be
written as: .
pruy° =[Vp'-n] atr = R,. (3.6)

Consider now the expression for the incident pressure field. Based on the given geom-
etry

p' = P'exp[ikr cos§] = P* Z €nt" Jn(kr) cos(nf), (3.7)
n=0
where
_ 1, ifn=0
6”—{2 if n >0, (38)

and Jn(-) is the Bessel function of the first kind of order n. The summation expression
above can be deduced from Equations 9.1.44 and 9.1.45 in ABRAMOWITZ AND STEGUN
[1972] and Euler’s exponential formula. Equation (3.7) may now be inserted into Equation
(3.6) to give

ii*(R,,0) = V

—P— Z €t Jn(kr) cos(nH)} e,
Pr

n=0

r=k, (3.9)

-
= —P' Y " T, (kR,) cos(nf).
Py

n=0
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From the above, the Fourier coefficients to the boundary condition can be directly observed
to be

({72, = pipigninJ;(kRs). (3.10)
f

Once the Fourier coefficients to the boundary condition are known, the solution to the
generated pressure field may be computed from Equation 8.41 in JUNGER AND FEIT[1972].
In the present context, this equation reduces to

N rsoon Ha(kr
P’ = —p;s Z(U: )ntléH_’((I.cRL) cos(nf)
n=0 n 8

(3.11)

cos(nb),

i i Jh(kR)Hn(kr)
=P Zenz B (kR,)

n=0

where H,(-) is the Hankel function of the first kind of order n.
It remains now to calculate the expression for the elastically radiated contribution to
the scattered pressure field. This is considered in the next section.

§4. Elastic Scattering

To solve for the elastically radiated contribution to the scattered field, the boundary
condition at the interface must first be deduced. From the balance equation (3.3) applied
at the cylinder surface

Op _ .
%(Rs"g) = —psir(R,,0). (4.1)

Recall that the pressure has been decomposed into three parts and that the normal gradient
of p* + p°* is identically zero on the cylinder surface by construction; see Equation (3.4).
Therefore, the boundary condition of interest is given by

op” .
5%(1%3,9) = —pyii(Rs,0), (4.2)

where u,(R;, 8) is the radial motion of the elastic structure under the total pressure loading
p=p'+p°>*+p". To solve this coupled problem, the following decompositions prove useful.
First, express the radial structure motion in a Fourier series in 6, ie.

(o ]
ur(Rs,0) = Z U, cos(nb). (4.3)
n=0
Then it is possible to write the radiated pressure due to this motion in the form

e o]
Pl o= Z Unz, cos(nf), (4.4)
n=0
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where z;, can be termed an acoustic impedance which is given by the following expression

H,(kr)
a _ 2 n
Zp =w pf‘_—-_kH,’l(kRs)' (4.5)
Equation (4.5) follows directly from JUNGER AND FEIT [1972] Equation 8.41 and will not
be elaborated on in this report.
In the simple case of an empty elastic cylinder, it is possible to write the cylinder

response as
oo

Up = Y —pncos(nb)/Z3, (4.6)

n=0

where p, = pi, + pi™ + p" and Z$ is known as the structural impedance. The forms for
the Fourier coefficients p}, and p* are readily deducible from Equations (3.7) and (3.11).
Combining Equations (4.3),(4.4), and (4.6) it is possible to solve for the Fourier coefficients
of the cylinder displacement as

: 300
Un — _pn +pn

4,
Z3 4+ 22 (47)

r=R,

The radiated pressure field due to the cylinder’s elasticity can be computed by plugging
- Equation (4.7) into Equation (4.4).

The specific form of Z; is omitted here because this simple situation where the modes
of the structural response uncouple as in Equation (4.6), does not hold in the presence of
the internal plate. Whenever the cylinder contains internal structure, all the modes of the
system are coupled together. In the case studied here, one finds (as will be shown in §5)
that the form of the response is given by

Un - Ln[p] ’ (48)

where

In the above, (B, Fr, Gpn, Am, Bn) are all unknowns that will be calculated later from the
consideration of particular shell and plate theories. From Equations (4.8) and (4.9), all the
modes of the response are seen to be coupled; ie. the n-th mode of the pressure loading is
seen to affect all the modes of the displacement response. To solve this more difficult set
of equations, first note Equations (3.1) and (4.4) imply that

Prn = DPn+ 2,Un, (4.10)

where it is understood that all quantities are evaluated at r = Rg for the remainder of
this section. Insert Equation (4.10) into Equation (4.8) to yield

Up = Lo[p) + Ln[z°U]. (4.11)
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This equation is solved for Uy, in roughly the same way one solves the integral equation
(@) = o(e) + h(a) [ fa)dy (412)

for f(z); ie. integrate both sides and solve for [ f(y) and plug back in to get f(z). In the
present situation the algebra is somewhat more complicated owing to the presence of two
sums as opposed to the one represented by the integral.

To begin, separate the free U,’s in Equation (4.11) and rewrite as

Up = iflETZ:{ (3] + Fn (ZAmz U ) n<23ngvm”

The task now is to compute the unknown sums that are prefixed by F, and G,. This
is accomplished by generating two linear equations in the two unknown sums. The two
equations are formed by multiplying Equation (4.13) by z2A, and summing over n and
by multiplying Equation (4.13) by 27 B, and summing over n. Doing so, and rewriting in
matrix form yields the following system of equations for the unknown sums:

(4.13)

r=R,

o~ Anz:F, A z3 G - a o~ Anz&La[p]

> B,sF, Bzt .. . " | & BziLap

‘;_—1—1%22 —Zl—EnZ;‘l ;Bmszm T;) 1_Ennzg
(4.14)

Equation (4.14) can now be solved for (3 o7 _o Anz8Unm) and (30°_ ) Bz Un,) to give

o Anz2L,[p] N Boz2G, = Bnz8 L, [p] > AnzeGy,
ntnnin] 1 — Znfnn —nennle] ninTn
(Z 1—-En2$>< 2)1—Enz;‘;>+<z 1-FE,z¢2 Zzzl—Enzﬁlz

iA 28 Upy = =2 n= n=0 n=0
m<“m m
= 2. Ap2%F, 2. Bnz%G S AnzG X\ Bpz%F
m=0 . n<n+n nn-n ncnn n<“ntn
1— —_— 1-— — | = — —_—
(4.15)
and
BnziLalp]\ (| _ i Anz2F, N iAnann{fﬂ i B.z%F,
i = 1= Enz} = 1— Enz] =5 1 — Enzg ¢1— Enzg
BngnUm — n= n= n= n=
= 2 Anz8F, . Bnz2G, N AnzGn 2. Bnz°F,
=N Lrfnln (1N Brfale ) LninTn Zncnin o
(1 Zl——Enzg Zl—Enzg Zl—Enzg Zl—Ensg
n=0 n=0 n=0 n=0
(4.16)

Equations (4.15) and (4.16) can now be plugged back into Equatlon (4.13) to get the
final expression for U,. Once done, this expression can be inserted into the impedance ex-
pression, Equation (4.4), to get the radiated pressure field due to the structure’s elasticity.

It remains to calculate the expressions for (E,, F,,G,. A, B..). This will be done in
the next section.
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§5. Elastic Structural Response

To calculate the unknown coefficients in Equation (4.9), the elastic response of the
shell-plate structure to an imposed pressure loading must be calculated.

Because most underwater structures of interest can easily be characterized by thickness
to radius ratios of much less than one, Donnell’s equations of motion for the shell are chosen.
For a discussion of the basic assumptions involved in this shell theory see JUNGER AND
FEIT [Chap 9, 1972], KrRAUS [Chap 6, 1967], or DONNELL [1933]. From the symmetry
of the loading and the chosen geometry, plane strain conditions may be assumed. Hence,
the axial displacements u, = 0 and g—z(-) = 0. Therefore, there are only two non-trivial
momentum balance equations:

1 [8%ug = Ou, 1. -
Rz (‘59— * 5@“) —gh=0 (5.1)
and ) ns ,
1 [Ouy B 0*u, 1 . 1—v? )
R (a‘ g +“"> TR Tatt P gy, =0 5:2)

where the imposed pressure loading, p, is taken as positive inward, 8% = h2/(12R?), and
c; = Ey/[(1 ~v)ps].

The motion of the plate is characterized by the displacement field w which is only a
function of y by the plane strain assumption employed for the shell. Therefore, there are
two non-trivial momentum balance equations for the plate. When higher order coupling
terms between the longitudinal and transverse motion are ignored, the transverse balance
of momentum (see e.g. SZILARD [4.2.12, 1974]) becomes:

Eyhd  9'w,
12(1 — v2) Oyt

+ pphytiy = 0. (5.3)

For the longitudinal balance equation, one can apply energy considerations as partially
outlined in TIMOSHENKO AND WOINOWSKY-KRIEGER [Art. 92, 1959] to yield

Eyh, 8*w,
1—v2 0y?

— pphpiy =0. (5.4)

Equations (5.1)~(5.4) are coupled together through the hinge constraint that says that
the shell and the plate must have the same displacement at their intersection points. In
terms of the present notation, this is expressed as

W€y + Wyey =ure, +ugey atr =R, 6 ==40,. (5.5)

The solution of Equations (5.1)~(5.4), given the constraint (5.5), is mostly easily ef-
fected by using minimization techniques with Lagrange multipliers. To this end, the energy
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forms per unit depth that generate the above given balance equations are summarized be-
low. The kinetic energy of the shell is given by:

1 L . .
T = 5p4hs /0 (@2 + 02)R, df | (5.6)

The potential energy of the shell is given by:

1 Eh, | Oug 2 B% [ 8u, ?
B — [ == . . +df. 5.
Vahell 21—u3/0 [R§(60 +“) TR\ ) | B (5.7)
And the loading energy on the shell is given by
27
Ve == [ HO)ur(0)R, a9, (55)
0

where the minus sign appears because the loading is taken as positive inwards. The plate
kinetic energy is given by

1 L/2
Tonio = 5oaha [ 02+ 03] dy, (5.9)
~L/2"

where L = 2R, sin6,. And the potential energy of the plate is given by

1 E,h LizV row, \?  h2 [8%w,\?
V. e &= = L.P / g -2 z d . .1
plat 21-v2 J_1s ( Oy + 12 \ 0y? y (5.10)
The fact that these are the correct expressions for the kinetic, potential, and loading

energies can be easily verified by first forming the Lagrangian over a specified time interval
as

~ tl
L(U,,-, Ug, Wg, wy) = (Tshell + Tplate _ ‘/shell - Vplate + Ushell) dt s (511)
to
and then by taking the variational derivatives of L with respect to each of its four argu-
ments. [Note that all the variations are zero at #; and t; (ie. the temporal endpoints are
multiples of 27 /w, since the analysis is restricted to time harmonic solutions), the shell
displacement variations are 27 periodic, and the plate displacement variations are zero at
y=+L/2]

To incorporate constraint (5.5), it is broken up into two independent scalar constraints

VU1 = w;(Rssinby) — ur(6p) cos b, + ug(fp)sinb, =0

. . (5.12)
Wy = wy(Rssinbp) — ur(6,)sind, — ug(8,)cosf, = 0.

The constraints are then appended to the previous Lagrangian to give the full system
Lagrangian as

L(wryug,0z,wy, Ap, A2) = L + M0y + A0,y . (5.13)
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At this juncture, it proves useful to make use of the system’s symmetry and perform
a spatially harmonic decomposition of the response. This yields

o0
Up = E U, cosnfe™ "t
n=0

(e o)
Ug = E V. sinnfe™**t

n=0

oo (5.14)
we = ce W 4 Z bjcos(2j — 1)%e"i“t ,
J=1
oo . T .
Wy = Zaj sin(2y — 1)%6 wt
J=1

where Vy = 0 and c is the rigid body displacement of the plate due to the symmetric shell
displacement. Note that the Lagrange multipliers are also given by expressions of the form
Aj=AeT G e(1,2). (5.15)
The harmonic coefficients (Uy, V,, b5, a;), the rigid body motion of the plate ¢, and the
Lagrange multipliers are all unknowns. To solve for them, the assumed forms (5.14) and
(5.15) are inserted into the Lagrangian (5.13) and the spatial and temporal integrations
are carried out. Then the variations are taken with respect to (Un, Vo, bj,aj,¢, M1, X2) to
generate a set of governing algebraic equations. In performing the above manipulations
one must carefully take into account the fact that only the real part (or the imaginary
part) of a quantity should be used in calculating energy like terms; ie. terms of the generic
form
generic term = uv u,v € C (5.16)

must be written out for the real case as
1 1
generic term = [i(u + 17)5(0 + o) (5.17)

where the superposed bar indicates the complex conjugate of a quantity.
If the above manipulations are carried out, the energy expressions become:

1 )
Tshen = §Rspshsw27r Z en(Uz + Vnz) > (518)
n=0
1 Eha & -
Vshen = 'ém;- Z €n [(nVn +Un)? + ﬂ2n4U,21] ) (5.19)
3 S n=0
Ushell = _Rsﬂ'enann s (520)
1 )
Tolate = prhprz 2c% + Za? + b? + 2¢hju; |, (5.21)
=1
1 = < o

J=1
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In the above,

2 (L2 Ty 4
A7 /_L/z ool = D) dy = (=) (25 =)=’ (5:29)
and 9 if 0
— , uIn= 2
en {1 if n > 0. (5:24)

The symbol w(r); denotes the in vacuo longitudinal plate frequencies and is given by:

5 (27 —1)*x* E, .
Wiy = . 5.25
(L)j L2 (1- Vg)Pp ( )
The in vacuo transverse plate frequencies w(r); are defined by:
9 — )it  E,h?
Wiry; = ( R R (5.26)
( - Vp)pp
Using the same substitutions the constraints become
oo o<
V) =c— Z U, cosnb, cosd, + Z Vasinnd, sinf, =0
oo ne o0 n= e o] (5'27)
Uy, = Z(—l)j_laj — Z Un cosnb,sinf, — Z Vi sinné, cos 6,=0.
=1 n=0 n=0

In the preceding equations the time dependence has been suppressed. When included, the
time dependence yields an identical multiplicative constant to all the equations and hence
will drop out of the formulation. Therefore, for clarity, it has been omitted.

Equations (5.18)~(5.27) may now be inserted into Equation (5.13) to give the har-
monically decomposed form of the system Lagrangian. The set of algebraic equations
that must be solved for the unknowns (Us,, V,, bj,a;,¢, A1, A2) is made up of the equations
defining the critical point of the Lagrangian. Taking first derivatives of the Lagrangian
with respect to each unknown gives:

Ehgm
Rs sha 2/ nUn—_u_ n Vn Un 2 4[]n _Ra n
petete e (1-+5)R," 2V 4 Un) + 80 "Un] Tenp (5.28)
— A1 cosnf, cos 0p — Az cosnb, sin 6,=0,
Eh,n
Rypshsw?ne, Vi — —= 2 (n?V, + nlU,
(1-v2)R, ( ) (5.29)

+ Arsinnf,sind, — A, sinnd, cosd, =0,

1 1 i
§pphpr2aj = 5PphpLesyja; + (=171 =0, (5.30)
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1 1

§Pphpr2(bj +cpj) — §Pphpr(2T)jbj =0, (5.31)
1 (o o]

SorhpLe? |2+ > biui| +M =0, (5.32)

J=1
¥, =0, (5.33)

and

¥y, =0. (5.34)

Equations (5.28)~(5.34) represents an inhomogeneous system of (4n+3, n — o0) algebraic
equations in (4n + 3, n — o0) unknowns. The goal is to solve for U,, in terms of p; so that
the developments of §4 may be applied. It helps to first nondimensionalize the governing
equations by introducing the following quantities:

R, R, R, <
U=w= Qwyj=ww; Unj= T) (5.35)

~ Rs Y _ 1 . . pphpr
pn—pnm, j—/\jm, M—QSIHGPW, (536)

r7 Uﬁ {7 V;
=—, Vp= =, .
Un _Rs’ -R‘9 (5 37)
and ;

Gj=Y, h=2 =2, (5.38)

L’ 7o L
Utilizing these nondimensional quantities Equations (5.28)-(5.34) appear in the simpler
form:

(Q% - B%n* —1)e, U, — ne,V,, — €nPn — A; COS né,cos b, — X2 oS nf,sinfd, =0, (5.39)

(92 — nz)envn — nen[}n + :\1 sinné, sinf, — 5\2 sinnf,cosf, =0, (5.40)
M9 - 0% )a; + (~197 K =0, (5.41)
(9% — Q% )b; + Q%Eu; =0, (5.42)
MQ? |28+ b | + 5 =0, (5.43)
j=1
¥, = 2sin fpC — Z U, cos nf, cos @, + Z V., sin nf,sind, =0, (5.44)
n=0 n=0

and

o0 > x0
T, = Z(—l)j_12sin9p&j — Z U, cos nt,sind, — Z Vi sinnf,cosf, =0.  (5.45)

=1 n=0 n=0



The Wave, the Cylinder, and the Plate 13

First, Equations (5.39) and (5.40) are solved for U, and V, in terms of the pressure and
the Lagrange multipliers. This yields:

g = (Q? — n2)ﬁn + (2% — n?)cosnb, cos b, — ncosnb, siné, 5,
Dn(2) €2 Dy (Q) (5.46)
(@2 — n?)sinnb,sinf, + nsin né, cos b, < '
+ 2
€nDn(Q)
and
— (02 — 32,4 _ 0
A G+ ncosnlp, cos b, ~ (R ~ f%n* — 1) cosnb,sinb, i,
D,(2) €nDn(§2) (5.47)
nsinnf,sinf, 4+ (Q° — %n* — 1)sinnb, cosd, 5 .
€n D () >

where the quantity D,(Q) is the characteristic equation of the shell, and is given by:
Dn(Q) = Q* — (B%n* +n? + 1)Q% + g2nS. (5.48)

Next, Equation (5.41) is solved for &; in terms of A, as:

~ (_l)j A (5 49’)
a; = 2 2> '
M = Q)
and Equations (5.42) and (5.43) are solved for ¢ in terms of A; as:
< A
E=— ! . (5.50)
o 2

MQ? [2 - X% et u?]

Equations (5.46)-(5.50) may now be inserted into the constraint Equations (5.44) and
(5.45) to yield a system of equations for the Lagrange multipliers. Written in matrix form,

one has -
“/V].l ./\712 /~\1 . Ql
[Nzl N22} <A2> = (Q‘z ! (5:51)

where the coefficients are given by:

Ny = —2sind,
2 oo Q2
MQ [2 =21 Wﬂ?}
oo 2 _ 2 . 9 . .
B Z cosnf, cos 6 (§2° —n?) cos nbp cos b, —ncosnb,sinb, (5.52)
oyt en D, (Q)

ncosnf, cos b, — (Q* — %n* — 1) cos nb, sinb,

+ Z sinnf, sind, Bl ) ,
€nl/n

n=0
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v (2% — n?)sinnd, sinb, + nsinnb, cos b,
Ny = — ZO cosnf, cos b, e Do)
= innd,sinb, + (2 — #%n* — 1)sinnb, cos d (5.33)
) ., nsinnd,siné, — B*n* —1)sinnfd, cos b,
+ ,;, sinnfp, sinf, e D) ,
= ., (9% —=n?)cosnb,cosh, —ncosnd,sinb
Ny = — Zocos népsinf, é)nDn(g) P P
- 8, cos 8, — (2 — B2n* — 1) cos nd, sin b (5:54)
B ) n cosnfp, cosf, — — B*n* — 1) cosnb, sind,
nzzo sinnf, cosd, e D () ,
and
> 2sinf
N22 1’2
; M2 = Q)
> . (Q? — n?)sin nfp sinf, + nsin nb, cos b, .
- nz:% cosnfpsind, e Do) (5.55)
B i Sinnf. cosd nsinnb, sind, + (2% — f%n* — 1)sinné, cos¥,
n=0 g ’ EnDn(Q) .
And the forcing terms are given by:
s (Q? —n?) | ) n - .
= 8 Op———r — 0 0p——<1 Pn :
Q1 7;) {cosn pcosf, D) sinnf, sin P D) D (5.56)
and -
Q2 2
Q2 = 7;) [cos nf, sin Gp%l_(_él_) + sinnf, cos GPKTEQ—S} Dr - (5.57)

This system of equations may be solved for the Lagrange multipliers in terms of the surface
pressure to give:

T, — f: (92 — n?)cosnb, cos 6, — nsinnd, sin 0] Nao

— D (Q2)(N11Nag — N1gNoy ) (5.58)
B [(92 —n?)cos nbysinf, 4 nsinnb, cos GP] Nig \ _ '
Dy (Q)(N11 Nag — N1aNoy) "
and
5= i [(Q* —n?)cosnb,sinb, + nsin nf, cos b,] N1y
= Dn(S2)(N11 N2z — N12Noy)

B (5.59)

[(92 —n?)cos nb, cos B, — nsinnb, sin Gp] Not \ .
Dn(Q)(N11 N2y — NiaNayp) Pr
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Equations (5.58) and (5.59) are now inserted back into Equation (5.46) to give an expression
for Uy in terms of the surface pressure. Comparing this result to Equations (4.8) and (4.9)
immediately leads to the identification of the unknowns in Equation (4.9) as:

RZ (Q? - n?)

3

hepsc? Dnp(Q2)

E, = (5.60)

2 _ 2 :
(£2* = n?) cosnb, cos§, — ncosnf, sind,

Fn = e Du(D) )

(5.61)

G — (Q? — n?)sin nf,siné, + nsin nb, cos 0,
™ €nDn(Q) ’

(5.62)

A - R? (€22 — n?) cos nby cos§, — nsinnb, sin 6,] Nao
" Dyn(Q)(N11Nag — N1y Ny )

[(Q% — n?)cosnb,sin 8, + nsinnf,cos§,] Ny,
D(Q)(N11 N2 — Ny Nay) ’

" hepsc?
(5.63)

and

- hspscg

B - R? [(Q% —n?)cosnb,sinb, + nsin n6pcosf,] Ny;
" Dr(§2)(N11Nag — N1aNoy)

(5.64)

[(Q% — n?)cosnb, cos 6, — nsinnd, sin 6,] Noy
Dn(2)(N11 Ny — N1aNoy) '
Based on this identification the elastically scattered pressure field is given (albeit in a rather

complicated fashion) entirely in terms of known quantities through Equations (4.13) and
(4.4).

§6. Closure

The boundary value problem for the scattering of a plane wave off an elastic shell
with an internal plate in the steady state has been solved in terms of known quantities.
The resulting expressions show the coupling of all the harmonics of the loading to each
harmonic of the response. The solution also shows as is to be expected that excitations
at the in vacuo natural frequencies of the shell or at the in vacuo natural frequencies of
the longitudinal modes of the plate lead to strong far field radiation from the structure.
Interestingly, though not surprisingly, excitations at the in vacuo natural frequencies of
the transverse modes of the plate do not necessarily produce strong far field radiation. For
the purpose of comparison and validation of other solution techniques, evaluation of the
infinite sums involved in the solution can be accomplished via brute force by taking large
numbers of terms or through use of the frequency window method of IGUSA, ACHENBACH,
AND MIN [1991a,b].
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