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Welcome to the students

Dear students,
This primer has been prepared to help you in your transition into the SEMM graduate program
at Berkeley. You are entering our program from a wide variety of schools that in our estimation
have prepared you well for a successful graduate career. However, because of this diversity of
backgrounds, there is no uniform base of knowledge especially when it comes to smaller technical
points. Thus to help everyone engage with their new courses with essentially the same background
knowledge, we have prepared these notes as a common and easy reference source for a collection
of fundamental concepts that will arise during your studies at Berkeley. Should you have the
opportunity, the best course of action is to familiarize yourself with the contents before classes
start. If not, then this primer can serve as a reference for quick study if you come across unfamiliar
fundamentals during the course of your studies in our program.

Many of the topics you will have seen and remember well, others you will only vaguely recall,
and some may even be new to you. If you are confident in the topics, enjoy the refresher. If you
only vaguely recall them, then take the opportunity to re-engage with them. If the topics are new,
take a little extra time to digest them and maybe even follow up with some of the given references
– familiarity and freshness in your mind are the most important issues, so that when you encounter
them in class you have confidence in your knowledge and can benefit from the discussions in class.

Some of the sections also have check-your-understanding questions, so that you can indepen-
dently test your knowledge.

As a guide to reading, the relevance of the material in the chapters that follow can be mapped
to the introductory Fall semester courses as shown in Table 1.

CE122 CE124 CE193 CE220 CE225 CE231 CE240 CE244
Chapter 1 H H M H L
Chapter 2 M M H H L
Chapter 3 L L H L L M M
Chapter 4 M L
Chapter 5 M M M H H M M M
Chapter 6 H H L L H
Chapter 7 H

Table 1: Relevance of chapters to the introductory Fall semester courses: High (H), Medium (M),
Low (L), Not Applicable (blank).
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Chapter 1

Elements of linear algebra

1.1 Introduction
The response of discrete models for structural and mechanical systems involves relations between
vectors and matrices. Concepts and methods of linear algebra are an indispensable help for the
understanding of the relations between response variables. The following sections of this chapter
give a summary-like introduction to the most important concepts of linear algebra. For further
information on any of the topics, the reader is referred to the textbook of Strang [2016].

1.2 Matrix and vector operations
Matrices and vectors are commonly used to describe physical quantities. Examples of matrices
that are frequently encountered are stiffness matrices, stress matrices(tensors), and moment of in-
ertia matrices(tensors). Vectors are also encountered often, for example to describe displacements,
velocities, and forces. At their most elementary level matrices and vectors are just convenient ways
to organize and manipulate information.

Matrices are two dimensional arrays of numbers with a certain number of rows and columns:

An×m =


A11 A12 · · · A1m

A21 A22 · · · A2m
... . . . ...

An1 A2n · · · Anm

 .

In the example above there are n rows and m columns, and each entry is a number. Vectors can be
thought of as matrices with just one row or one column. For the most part in structural engineering
we use column vectors:

vn×1 =


v1
v2
...
vn

 .
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To effectively use matrices and vectors, it is important to be familiar with a number of operations.
Below, we enumerate some basic ones.

1.2.1 Transpose
The transpose of a matrix is a new matrix that swaps the rows and columns of the original matrix.
Operationally, the transpose of a matrix A is the matrix AT where the entry ATij takes on the value
Aji. Note that if A has n columns and m rows, then AT will have m columns and n rows.

Example 1.1 (Transpose of a 2× 3 matrix). Suppose we are given the matrix

A =

[
1 5 6
2 3 7

]
.

Its transpose will then be given by

AT =

 1 2
5 3
6 7

 .

Symmetric matrices

If a matrix is equal to its transpose, A = AT , then we say that the matrix A is symmetric. Sym-
metry of matrices is very common in physical problems and implies a number of convenient prop-
erties. Common symmetric matrices are stiffness matrices and stress matrices. Note also that a
matrix must be square for it to possibly be symmetric.

Skew-symmetric matrices

If a matrix is equal to the negative of its transpose, A = −AT , then we say that the matrix A
is skew-symmetric. Skew-symmetry of matrices is less common in physical problems but one
encounters them when dealing with rotational motion. Note also that a matrix must be square for
it to possibly be skew-symmetric.

Example 1.2 (Skew-symmetric matrix). The matrix

A =

 0 5 −6
−5 0 7

6 −7 0
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is skew-symmetric. This follows, since its transpose is given by

AT =

 0 −5 6
5 0 −7
−6 7 0

 ,

showing that A = −AT . Note that the diagonal of a skew-symmetric matrix is always zero,
and the entries on opposites sides of the diagonal differ by their algebraic sign.

1.2.2 Vector products

Vector products or dot products are products of two vectors that produce a number (scalar). They
are sometimes also called scalar products; sometimes they are called inner products. Given two
vectors v and w, their vector product is defined as

v ·w def
=

n∑
i=1

viwi = v1w1 + v2w2 + · · ·+ vnwn .

Note that for this definition to make sense, the two vectors need to have the same number of
entries(components). Operationally, one takes corresponding entries, multiplies them together,
and then adds up all the products.

Example 1.3 (Dot product between two 2× 1 vectors). Consider the two vectors

f =

(
5
−1

)
and g =

(
−1
−5

)
.

Their dot product is given by

f · g = 5× (−1) + (−1)× (−5) = −5 + 5 = 0 .

Whenever the dot product of two vectors is equal to zero, we say that the vectors are orthog-
onal. In regular three-dimensional space, this tells us that the vectors span an angle of 90
degrees in their plane.

1.2.3 Vector norms

The norm of a vector represents its length or magnitude. It is defined via the dot product as

‖v‖ def
=
√
v · v =

√√√√ n∑
i=1

(vi)2 = (v1)2 + (v2)2 + · · ·+ (vn)2 .
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It is useful to note that the dot product of vectors in three-dimensional space is equal to the product
of the vector norms times the cosine of the angle between them:

v ·w = ‖v‖ ‖w‖ cos θvw ,

where θvw is the angle between v and w.

1.2.4 Matrix vector multiplication
Matrix vector products can occur in many different contexts. The product of a matrix and a vector
generates a new vector. This operation is defined as

c1
c2
...
cn

 =


A11 A12 · · · A1m

A21 A22 · · · A2m
... . . . ...

An1 A2n · · · Anm




b1
b2
...
bm

 ,

where

ci
def
=

m∑
j=1

Aijbj .

Operationally the ith entry of c is computed by taking the dot product of the ith row of A with the
vector b. In compact form, one can write

c = Ab . (1.1)

Note that the number of columns of A must match the number of rows of b for the definition to
make sense. The number of rows of the resulting vector c matches the number of rows of A.

Example 1.4 (Product of a matrix and a vector). Consider the following matrix and vector

A =

[
1 2
3 4

]
and b =

(
6
7

)
.

Their product will be a new vector

c = Ab =

[
1 2
3 4

](
6
7

)
=

(
1× 6 + 2× 7
3× 6 + 4× 7

)
=

(
20
46

)
.

Another way of thinking of the matrix-vector product in (1.1) is that the vector c is the linear
combination of the columns of matrix A with the components of the vector b serving as factors.
All possible linear combinations of the columns of A form the column space of matrix A. By
the same argument all possible combinations of the rows of A form the row space of matrix A.
Further details may be found in Strang [2016, Section 3.1].
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Positive definite

A physically important class of matrices are those that are positive definite. A positive definite
matrix is a square matrix A such that

v ·Av > 0

for all non-zero vectors v. The mass matrix of a structure is an example of a positive definite
matrix.

1.2.5 Matrix matrix products
It is also possible to multiply two matrices. The product of two matrices A and B is a third matrix
C:

Cn×p = An×qBq×p ,

where the entry in the ith row and jth column of C is defined as

Cij
def
=

q∑
k=1

AikBkj .

For this definition to make sense, the number of columns of A must equal the number of rows of
B. Operationally, the Cij entry of C is the dot product of the ith row of A with the jth column of
B.

Example 1.5 (Product of two matrices). Consider the following two matrices

A =

[
1 2
3 4

]
and B =

[
1 4
3 2

]
.

Their product will be a new matrix

C = AB =

[
1 2
3 4

] [
1 4
3 2

]
=

[
1× 1 + 2× 3 1× 4 + 2× 2
3× 1 + 4× 3 3× 4 + 4× 2

]
=

[
7 8
15 20

]
.

1.2.6 Matrix inverse
Given a square matrix A, its inverse A−1 is the matrix with the property that

A−1n×nAn×n = In×n ,

where I is the identity matrix. All the entries of I are zero except the diagonal entries, which are
unity (equal to one). Note that the identity has the special property that Iv = v for every vector
v. Further note that not all matrices have inverses. To have an inverse, a matrix must be non-
singular. One possible test for checking whether or not a square matrix is singular is to compute
its determinant. If detA 6= 0, then A is non-singular and it has an inverse.
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1.3 Eigenvalue problems
Multiplying a vector by a matrix produces a new vector. If that new vector is a scaled version of the
original vector, then we call such a vector an eigenvector and the scaling factor the corresponding
eigenvalue. Note the original vector and the new vector need to have the same number of compo-
nents for this to make sense. Thus, only square matrices can have eigenvectors and eigenvalues. In
equation form, if

Av = λv , (1.2)

then v is an eigenvector of A and λ is the eigenvalue. Eigenvalues and eigenvectors have many
uses, for example they correspond to principal directions and stresses; they are intimately related
to vibrational frequencies and modes of vibration.

To find the eigenvalues, one can rearrange (1.2) to read

(A− λI)v = 0 ,

where 0 is the vector of all zeros. Assuming A is an n × n matrix, this equation represents a
system of n equations for the components of v. Since the right-hand size is zero, this is a system
of homogeneous equations (see Sec. 1.4.1) and can only have non-trivial (non-zero) solutions when

det (A− λI) = 0 . (1.3)

Computing the determinant, will generate an nth order polynomial in λ. The roots of this polyno-
mial (the characteristic polynomial of A) provide the eigenvalues. Thus there will be n possible
eigenvalues. Corresponding to each eigenvalue, there will be a solution to (1.2) for the related
eigenvector (leaving aside some technical details associated with repeated eigenvalues).

The details of the computations for the eigenvalues and eigenvectors are generally not too
important as the operations are normally not executed by hand, but rather by use of specialized
software. Also observe that, if a vector is an eigenvector, then so is any scalar multiple of it. Thus
when eigenvectors are reported, they are usually normalized to have unit length, ‖v‖ = 1. Further,
it is useful to know that symmetric matrices have real-valued eigenvalues and their eigenvectors
are mutually orthogonal.

1.3.1 Generalized eigenvalue problem
The eigenvalue problem described above is the classic eigenvalue problem. In structural engi-
neering, one also encounters a slight variant known as the generalized eigenvalue problem. In the
generalized case, one starts with two square matrices of the same size, say, K and M . Then one
looks for vectors, that after multiplication by both K and M , point in the same direction. Thus
the defining equation in the generalized case is

Kv = λMv .

The eigenvalues are then found similarly to the classic case as the roots of an nth order polynomial
in λ,

det (K − λM ) = 0 .
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In the generalized case the eigenvectors are usually normalized so that v ·Mv = 1. Further,
when K and M are both symmetric, then the eigenvectors possess the property that they are mass
orthogonal, which means if v and w are eigenvectors for different eigenvalues, then v ·Mw = 0.
This situation arises in structural vibrations.

1.4 Systems of linear equations
The linear response of discrete models for structural and mechanical systems is described by rela-
tions of the form (1.1), rewritten here as

b = Ax . (1.4)

Here we seek the solution x of the linear system of equations in (1.4) for a given matrix A and
given vector b. The general solution of this linear system depends on the properties of the matrix
A, which may not be square.

For the case that the matrix A is square, a unique solution exists if the rank of the matrix is
equal to the number of rows m (and the number of columns n = m). Such a matrix is said to have
full rank. A square matrix of full rank has linearly independent rows and columns, meaning that it
is not possible to express a row or column as the linear combination of the other rows or columns.
It is possible to establish the rank of a matrix by transforming it to reduced row-echelon form and
counting the number of non-zero pivots in the process, as discussed in Strang [2016, Section 3.2].

Example 1.6 (Solution of system of equations). Consider the following linear system of equa-
tions (

3
4

)
=

[
1 0.8

0.5 0.3

](
x1
x2

)
.

It can be established that the coefficient matrix has full rank. This would not be the case if the
coefficient matrix were for example [

1 0.8
0.5 0.4

]
,

since in this case the first row is a multiple of the second row by the factor 2.
Returning to our original problem, we can use Gauss elimination to get the solution, mul-

tiplying the first row by 0.5 and subtracting it from the seecond to get(
3

2.5

)
=

[
1 0.8
0 −0.1

](
x1
x2

)
,

which gives x2 = −25 from the second equation and x1 = 23 after substitution into the first.
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It is easy to check that [
1 0.8

0.5 0.3

](
23
−25

)
=

(
3
4

)
.

1.4.1 Under determined systems
We turn now our attention to the solution of a linear system with a coefficient matrix A having
more columns n than rows m, i.e. with more unknowns n than available equations m.

Under the assumption that the coefficient matrix A has full rank, meaning that the rows are
linearly independent, the general solution of the linear system of equations in (1.4) consists of the
superposition of a particular solution xp and a homogeneous solution xh. The particular solution
is a vector, while the homogeneous solution consists of any linear combination of a set of n −m
linearly independent column vectors, known as the nullspace basis. For the particular solution xp
we set n − m unknowns equal to zero after making sure that the rank of the matrix without the
corresponding columns is still full. The homogeneous solution xh is the general solution of the
system of equations

0 = Axh . (1.5)

All possible linear combinations of the columns of the homogeneous solution xh form the nullspace
of the matrix A.

Example 1.7 (Solution of under determined system of equations). Consider the following
linear system of equations

(
3
4

)
=

[
1 0.8 0 0.8
0 0.6 1 −0.6

]
x1
x2
x3
x4

 .

One can establish that the rows of the coefficient matrix are linearly independent, so that its
rank is equal 2. For determining the particular solution we select 4− 2 = 2 unknowns and set
them equal to zero. The most convenient choice is the selection of x2 and x4, since this leaves
the identity matrix as the coefficient matrix for unknowns x1 and x3. x2 and x4 are called the
free variables of the problem. This selection gives

xp =


xp1
xp2
xp3
xp4

 =


3
0
4
0


as the particular solution.
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The homogeneous solution results from the solution of the linear system of equations

(
0
0

)
=

[
1 0.8 0 0.8
0 0.6 1 −0.6

]
x1
x2
x3
x4

 .

The most convenient way of accomplishing this is to set each free variable in turn equal to 1,
with the other free variables left as 0, and then determine the remaining unknowns. Starting
with x2 = 1 and x4 = 0 we get

x1 = −0.8

x3 = −0.6 ,

and for x2 = 0 and x4 = 1 we get

x1 = −0.8

x3 = 0.6 .

The homogeneous solution then takes the general form

xh =


−0.8

1
−0.6

0

α +


−0.8

0
0.6
1

 β

noting that x2 and x4 can assume any value, as represented by the free variables α and β. It is
straightforward to check that xh in the last expression satisfies (1.5) for

A =

[
1 0.8 0 0.8
0 0.6 1 −0.6

]
.

The complete solution is given by x = xp+xh with two free parameters α and β (assuming
any value) for the homogeneous solution.

1.4.2 Over determined systems

Finally, we turn our attention to the solution of a linear system with a coefficient matrix A having
more rows m than columns n, i.e. with more equations m than unknowns n.

Under the assumption that the matrix A has full rank a solution to the linear system of equations
in (1.4) exists if and only if the vector b is orthogonal to the nullspace of the transpose of the matrix
A. We demonstrate this necessary and sufficient condition with the following example.
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Example 1.8 (Solution of over determined system of equations). Consider the following linear
system of equations 

b1
b2
b3
b4

 =


1 0

0.8 0.6
0 1

0.8 −0.6

(x1x2
)

with the coefficient matrix

A =


1 0

0.8 0.6
0 1

0.8 −0.6

 .

We recognize the coefficient matrix as the transpose of the coefficient matrix from the preced-
ing example, so it is of full rank. Solving the first and third equation for x1 and x2 gives

x1 = b1

x2 = b3 .

Substituting into the second and fourth equation gives

b2 = 0.8x1 + 0.6x2

b4 = 0.8x1 − 0.6x2
→

b2 = 0.8b1 + 0.6b3

b4 = 0.8b1 − 0.6b3 .

Rewriting the last two equations in terms of all components of the vector b gives

−0.8b1 + (1)b2 − 0.6b3 + (0)b4 = 0

−0.8b1 + (0)b2 + 0.6b3 + (1)b4 = 0
→

[
−0.8 1 −0.6 0
−0.8 0 0.6 1

]
b1
b2
b3
b4

 = 0 .

As long as the vector b satisfies this property, all of the equations are satisfied and we have a
solution to our system of equations. We recognize that the rows of the coefficient matrix for the
last equation correspond to the columns of the homogeneous solution xh from the preceding
example. Thus we can interpret the last equation as requiring b to be orthogonal to any element
of the nullspace of AT . (Note the matrix of Example 1.7 is the transpose of our current A.)
In conclusion, if the vector b is orthogonal to the nullspace of the transpose of the coefficient
matrix A, a solution to the over determined system of equations b = Ax exists and is equal to

x =

(
b1
b3

)
for the problem at hand. If this condition is not satisfied, then there is no solution to the over
determined system of equations.
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1.5 Matrix decompositions

1.5.1 LU decompostion
There are a number of important matrix decompositions. In relation to solving linear equations the
most common decomposition is the LU decomposition, pronounced “ell-you”. Here a matrix A is
written as a product

A = LU ,

where L is a lower triangular matrix and U is an upper triangular matrix. These matrices are the
result of a Gaussian elimination process. They allow for the easy solution of linear equations once
they are computed.

1.5.2 Cholesky decomposition
In the special case where A is symmetric positive definite then one also has the Cholesky decom-
position

A = LLT .

In the 3× 3 case

A = LLT =

L11 0 0
L21 L22 0
L31 L32 L33

L11 L21 L31

0 L22 L32

0 0 L33

 ,

where

L =


√
A11 0 0

A21/L11

√
A22 − L2

21 0

A31/L11 (A31 − L31L21)/L32

√
A33 − L2

31 − L2
32

 .

The components of L can be computed row by row or column by column. In general the entries
of L are given by

Ljj =

√√√√Ajj −
j−1∑
k=1

L2
jk

Lij =
1

Ljj

(
Aij −

j−1∑
k=1

LikLjk

)
i > j .

1.6 Check your understanding problems
1. Consider the following matrices and vectors:

A =

[
1 2 3
4 5 6

]
, B =

[
6 2
7 8

]
, v =

 1
2
3

 , w =

(
3
4

)
.
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(a) Compute AT .

(b) Compute ATB.

(c) Compute ATA and determine if it is symmetric or not.

(d) Compute Av.

(e) Compute w ·Av.

(f) Compute ‖w‖.
(g) Find B−1 by hand and check your answer using a software package, say, Matlab. There

are many procedures for finding the inverse of a matrix. If you do not recall any, do not
worry about it. It is pretty rare that one would do that by hand. Knowing how to get a
software system (or a graphing calculator) to do it is more important.

(h) Using a graphing calculator or an other software system, find the eigenvalues and eigen-
vectors of B. Then check that the vectors given to you are actually the eigenvectors
of the matrix by multiplying them by B and showing that the resulting vector is just a
scalar multiple of the original.

2. Consider the system of linear equations from Example 1.7.

(a) Determine the particular solution and the homogeneous solutions for the selection of
x1 and x2 as free variables.

(b) Show that it is possible to select two suitable sets of coefficients for the homogeneous
solutions, to reproduce the homogeneous solutions from Example 1.7. This shows that
the nullspace of the coefficient matrix is unique.



Chapter 2

Ordinary differential equations

2.1 Introduction
Ordinary differential equations (ODEs) describe numerous phenomena relevant to Structural En-
gineering, Mechanics and Materials (SEMM). For example, recall the equation which describes
the shape of a suspension bridge cable:

d2y

dx2
=
w(x)

H
, (2.1)

where H is the horizontal reaction at the supports (and also the tension of the cable when it is
horizontal) and w(x) is the vertical load per unit length at position x along the cable.

A similar equation describes the internal bending moment M(x) of a horizontal beam at a
horizontal location x:

d2M(x)

dx2
= w(x) . (2.2)

Equations (2.1) and (2.2) are obviously related; the shape of a cable that only acts in pure tension
effectively provides an equivalent “moment” capacity that relates to the required bending capacity
of a beam to carry the same load.

Euler-Bernoulli beam theory assumes that the curvature of the beam is proportional to the
moment according to another differential equation:

M(x) = EI
d2v

dx2
, (2.3)

where v is the vertical deflection of a horizontal beam. Equation (2.3) can be re-written as a fourth
order differential equation:

d2

dx2

(
EI

d2v

dx2

)
= w(x) . (2.4)

For uniform beam cross sections, (2.4) becomes:

EI
d4v

dx4
= w(x) . (2.5)
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These differential equations that are fundamental to structural engineering are all separable.
They can be solved by separating the variables and integrating. Boundary conditions can then be
used to solve for integration constants.

However, more generally, differential equation may not be separable. For example, consider
the dynamic response of a mass and spring system which has the following equation of motion:

mẍ(t) + kx(t) = f(t) , (2.6)

where t represents the time, x(t) represents the position of a mass, m is the mass, k is the stiffness,
and f(t) is a function that does not include x(t) or its derivatives, and is sometimes referred to
as the forcing function. If m and k are constants, (2.6) is a linear second order ODE. How one
determines m, k and f(t) for a real system are unimportant for the present discussion.

For dynamic systems with velocity dependent damping, an additional term is added:

mẍ(t) + cẋ(t) + kx(t) = f(t) , (2.7)

where c is a constant related to the damping in the system. Again, the derivation of this equation,
and its physical meaning, are not important here. From a mathematical perspective, (2.7) is a linear
second order ODE.

This chapter focuses on methods to solve linear second order differential equations such as
(2.7).

2.2 Homogeneous solutions
A differential equation is said to be homogeneous if all the terms involve the unknown x, or a
derivative of x. In other words, the second order differential equation takes the following form:

Aẍ(t) +Bẋ(t) + Cx(t) = 0 , (2.8)

where A, B, and C are constants. With reference to a dynamical system, a homogeneous equation
is equivalent to specifying that there is no forcing function, i.e. f(t) = 0 in (2.7). The solution to
a homogeneous second order linear differential equation is sometimes referred to as the ”homoge-
neous solution” or the ”complementary function” and can be written in various forms.

The nature of the derivatives of an exponential function make it a promising “guess” for the
homogeneous solution. In particular, assume the homogeneous solution is of the form:

x(t) = ert . (2.9)

Plugging this exponential function and its derivatives back into (2.8) yields:

Ar2 +Br + C = 0 . (2.10)

This is often referred to as the characteristic equation of a linear second order ODE. Now, solving
for the roots of (2.10) yields:

r1, r2 =
−B ±

√
B2 − 4AC

2A
. (2.11)
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Generally, three possible scenarios result: 1) two distinct real roots when B2 > 4AC, 2) two
distinct roots that are complex conjugates of each other when B2 < 4AC, or 3) one repeated root
when B2 = 4AC. Each of these scenarios has a different general solution to the homogeneous
ODE in (2.8).

Scenario 1: When the roots are distinct and real, the general solution to the homogeneous ODE
can be written as a linear superposition of the solution related to each root:

xc(t) = c1e
r1t + c2e

r2t , (2.12)

where the subscript c stands for the complementary solution, and the unknown constants c1 and c2
can be determined from the initial conditions at time t = 0, i.e. x(0) = x0 and ẋ(0) = v0.

Scenario 2: When the roots are distinct complex conjugates, the roots take the form:

r1, r2 = λ± iµ . (2.13)

The general solution to the homogeneous ODE can again be written as a linear superposition of
the solution related to each root:

xc(t) = c1e
(λ+iµ)t + c2e

(λ−iµ)t . (2.14)

Rearranging:
xc(t) = c1e

λteiµt + c2e
λte−iµt . (2.15)

Recall that:
eiµt = cos(µt) + i sin(µt) . (2.16)

Substituting (2.16) into (2.15) yields:

xc(t) = eλt(c3 cos(µt) + c4 sin(µt)) . (2.17)

The unknown constants c3 and c4 can again be determined from the initial conditions at time t = 0,
i.e. x(0) = x0 and ẋ(0) = v0. Note that if B = 0 in (2.8), then λ = 0, and (2.17) simplifies to:

xc(t) = c3 cos(µt) + c4 sin(µt) . (2.18)

This is the relevant solution for the dynamical system in (2.6) which describes a system with no
damping (i.e. c = 0 in (2.7)).

Scenario 3: When there is one repeated root:

r = r1 = r2 =
−B
2A

.

Using linear superposition, the solution could be:

xc(t) = (c1 + c2)e
rt = c3e

rt . (2.19)



16 Ordinary differential equations

This is a potential solution, but (2.19) is not sufficiently general to solve with two initial conditions
(x0, v0). Instead, a more general “guess” for the initial solution is required:

xc(t) = d(t)ert . (2.20)

Plugging (2.20) and its derivatives back into (2.8) yields:

ert(d̈(t)) = 0 .

Since ert is not zero:
d̈(t) = 0 .

Integrating twice results in d(t) = c4 + c5t. Plugging back into (2.20) yields:

xc(t) = (c4 + c5t)e
rt . (2.21)

The unknown constants c4 and c5 can again be determined from the initial conditions at time t = 0,
i.e. x(0) = x0 and ẋ(0) = v0.

2.3 Particular solutions
In most dynamical systems of interest, the forcing function (f(t) in (2.7)) is not zero. In this case,
the ODE is said to be inhomogeneous. In generic form, an inhomogeneous second order ODE with
constant coefficients can be written as:

Aẍ(t) +Bẋ(t) + Cx(t) = f(t) , (2.22)

where f(t) is a generic forcing function. The solution to inhomogeneous ODEs is the summation
of the homogeneous solution (i.e. the complementary function) and the particular solution:

x(t) = xc(t) + xp(t) , (2.23)

where the subscript p denotes the particular solution. In general, the particular solution can be
found using the method of variation of parameters. However, for many forcing functions, it is
easier to determine xp(t) using an educated guess for the particular solution, in a manner similar
to the educated guess in (2.9) in Section 2.2. This educated guess method is used in the following
sections.

2.3.1 Exponential forcing
Assume the inhomogeneous term is an exponential function and that the ODE takes the form:

Aẍ(t) +Bẋ(t) + Cx(t) = Deαt , (2.24)

where D and α are constants. An educated guess for the particular solution preserves the exponent
as follows:

xp(t) = C1e
αt , (2.25)
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where C1 is a constant that can be determined by plugging (2.25) and its derivatives back into
(2.24). For the generic function considered here:

A(C1α
2eαt) +B(C1αe

αt) + C(C1e
αt) = Deαt . (2.26)

Solving (2.26) for C1 yields:

C1 =
D

Aα2 +Bα + C
. (2.27)

The complete solution is obtained by plugging (2.25) and (2.27) into (2.23):

x(t) = xc(t) + xp(t) = xc(t) +
D

Aα2 +Bα + C
eαt , (2.28)

where the complimentary solution xc(t) results from one of the scenarios in Section 2.2.

Example 2.1 (Exponentially forced ODE). Solve ẍ(t) − 4ẋ(t) + 6x(t) = 2e4t, subjected to
the following initial conditions: x(0) = x0 = 0 and ẋ(0) = v0 = 0.

Solution: The solution takes the form of (2.28)

x(t) = xc(t) + xp(t) = xc(t) +
D

Aα2 +Bα + C
eαt .

The roots of the characteristic equation are:

r1, r2 =
−B ±

√
B2 − 4AC

2A
= 2± i

√
2 = λ± iµ .

The complete solution is:

x(t) = xc(t) + xp(t) = e2t
(
c1 cos(

√
2t) + c2 sin(

√
2t)
)

+
1

3
e4t .

Now solve for the constants c1 and c2 using the initial conditions. Note that the initial condi-
tions must be satisfied for x(t), not xc(t).

x(0) = 0 ⇒ c1 = −1

3
,

ẋ(0) = 0 ⇒ c2 = −
√

2

3
.
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Plugging c1 and c2 into the complete solution yields:

x(t) = e2t

(
−1

3
cos(
√

2t)−
√

2

3
sin(
√

2t)

)
+

1

3
e4t .

2.3.2 Polynomial forcing
Assume instead that the inhomogeneous term is a polynomial function, so the ODE takes the form:

Aẍ(t) +Bẋ(t) + Cx(t) = Dtβ . (2.29)

An educated guess for the particular solution is a complete polynomial of order β:

xp(t) = C1 + C2t+ C3t
2 + · · ·+ Cβ+1t

β . (2.30)

The constants C1 to Cβ+1can again be determined by plugging (2.30) and its derivatives back into
(2.29). In this case, a general particular equation is cumbersome. The following example illustrates
the process.

Example 2.2 (Polynomial forced ODE). Solve ẍ(t) − 2ẋ(t) − 8x(t) = 2t2 − 1, subjected to
the following initial conditions: x(0) = x0 = 0 and ẋ(0) = v0 = 1.

Solution: An educated guess for the particular solution according to (2.30) is a complete sec-
ond order polynomial:

xp(t) = C1 + C2t+ C3t
2 .

Plug this particular solution back into the ODE:

(2C3)− 2(C2 + 2C3t)− 8(C1 + C2t+ C3t
2) = 2t2 − 1 .

Collect terms of similar order:

2C3 − 2C2 − 8C1 = −1 ,

−4C3t− 8C2t = 0 ,

−8C3t
2 = 2t2 .

Solving these equations simultaneously yields C3 = −1
4
, C2 = 1

8
, C1 = 1

32
, and the particular

solution becomes:
xp(t) =

1

32
+

1

8
t− 1

4
t2 .
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The roots of the characteristic equation are:

r1, r2 =
−B ±

√
B2 − 4AC

2A
= 4, −2 .

Applying (2.12) for the complementary function, the complete solution takes the form:

x(t) = xc(t) + xp(t) = c1e
4t + c2e

−2t +

(
1

32
+

1

8
t− 1

4
t2
)
.

Now solve for the constants c1 and c2 using the initial conditions:

x(0) = 0 ⇒ c1 + c2 +
1

32
= 0 ,

ẋ(0) = 1 ⇒ 4c1 − 2c2 +
1

8
= 1 .

Solving for c1 and c2 yields the final solution:

x(t) =
15

32
e4t − 1

2
e−2t +

(
1

32
+

1

8
t− 1

4
t2
)
.

2.3.3 Sine or cosine forcing
Assume instead that the inhomogeneous term (i.e. forcing function) is a sine or cosine function.
A sine function will be considered here, but the same procedure can be followed if the inhomoge-
neous term is a cosine function or a combination of sine and cosine functions. Assume the ODE
takes the form:

Aẍ(t) +Bẋ(t) + Cx(t) = D sin(αt) . (2.31)

An educated guess for the particular solution is a combination of sine and cosine functions with
the same period:

xp(t) = C1 cos(αt) + C2 sin(αt) . (2.32)

The constants C1 and C2 can again be determined by plugging (2.32) and its derivatives back into
(2.31). The following example illustrates the process.

NOTE: Recall from (2.16) that D sin(αt) = Im{Deiαt}. Therefore, the sine forcing function
in (2.31) could be transformed to an exponential forcing function, and the ODE could be solved in
a similar fashion to Section 2.3.1, but this will not be demonstrated here.

Example 2.3 (Sine forced ODE). Solve: ẍ(t) + x(t) = sin(2t), subjected to the following
initial conditions: x(0) = x0 = 1 and ẋ(0) = v0 = 0.
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Solution: Guess that the particular solution takes the form of (2.32):

xp(t) = C1 cos(2t) + C2 sin(2t) .

Plug this equation back into the ODE:

(−4C1 cos(2t)− 4C2 sin(2t)) + (C1 cos(2t) + C2 sin(2t)) = sin(2t)

Collect similar terms:
−3C1 cos(2t) = 0 ,

−3C2 sin(2t) = sin(2t) .

Solving these equations for C1 and C2 and plugging back into the particular solution yields:

xp(t) = −1

3
sin(2t) .

The roots of the characteristic equation are:

r1, r2 =
−B ±

√
B2 − 4AC

2A
= ±i.

Using (2.18), the complete solution takes the form:

x(t) = xc(t) + xp(t) = c3 cos(t) + c4 sin(t)− 1

3
sin(2t) .

Now solve for the constants c3 and c4 using the initial conditions:

x(0) = 1 ⇒ c3 = 1,

ẋ(0) = 0 ⇒ c4 =
2

3
.

This yields the final solution:

x(t) = cos(t) +
2

3
sin(t)− 1

3
sin(2t).

2.4 Reduction of Order
The methods above can be used to directly solve linear second order ODEs. Alternatively, it is
possible to reduce the order of a differential equation prior to solving. This is often convenient
when solving differential equations numerically, e.g. solving using Python or MATLAB.

For example, assume that x(t) represents the displacement of a mass, and that the equation of
motion for the mass is of the form:

mẍ(t) + cẋ(t) + kx(t) = f(t) . (2.33)
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Now introduce a new set of variables:

y1(t) = x(t) ,

y2(t) = ẋ(t) .

The second order ODE in (2.33) can now be re-written as a system of coupled first order ODEs as
follows:

ẏ1(t) = y2(t) ,

ẏ2(t) =
f(t)− cy2(t) + ky1(t)

m
.

This enables alternative solution procedures, which are not detailed here.

2.5 Check your understanding problems
1. Solve 2ẍ(t)−4ẋ(t)+2x(t) = 0, subjected to the following initial conditions: x(0) = x0 = 0

and ẋ(0) = v0 = 1.

2. Solve 2ẍ(t)−2ẋ(t) +x(t) = 2 cos(4t), subjected to the following initial conditions: x(0) =
x0 = 1 and ẋ(0) = v0 = 1.

3. Solve ẍ(t)−2ẋ(t)−3x(t) = 4t, subjected to the following initial conditions: x(0) = x0 = 0
and ẋ(0) = v0 = 0.



22 Ordinary differential equations



Chapter 3

Elements of integral calculus

3.1 Introduction
The solution to many engineering problems involves integration of a function of one or more
variables, commonly called the integrand. Depending on the form of the integrand, an analytical
solution may or may not exist. If an analytical solution is not available, numerical integration
may be used. There are many numerical integration rules used in software commonly used by
engineers, including MATLAB and Python. In such applications, sometimes attention should be
paid in how the integrand is formulated to avoid numerical issues that are associated with finite
precision arithmetic. Further, for bounded multi-fold integrals, careful attention should be paid to
the limits of integration. Examples are given below.

3.1.1 Integration by parts
Consider the single-fold integral over the interval [a, b]

I =

∫ b

a

f (x) dx.

If F (x) is the integral of f (x), i.e., if f (x) = dF (x) /dx, then I = F (b) − F (a). One useful
formula for integration occurs when the integrand can be written in the form f (x) = u(x)v′(x),
where v′(x) is the derivative of a known function v (x). Then∫ b

a

u (x) v′ (x) dx = [u (x) v (x)]ba −
∫ b

a

u′ (x) v (x) dx .

Known as integration by parts, this formula is useful if the integral of the integrand u′ (x) v (x) has
a known solution.

Example 3.1 (Integration by parts). Let f (x) = x sin (x). We know that sin (x) is the deriva-
tive of − cos (x). Thus,
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∫ b

a

x sin (x) dx = [−x cos (x)]ba +

∫ b

a

1× cos (x) dx

= a cos(a)− b cos(b) + sin(b)− sin(a) .

3.1.2 Leibnitz rule
On occasion it is required to take the derivative of an integral expression with respect to a variable
that appears in the limits of integration and/or in the integrand. Under fairly general conditions,
this is accomplished using the rule of Leibnitz:

d

dα

∫ g(α)

h(α)

f(x, α) dx = f(g(α), α)
dg

dα
− f(h(α), α)

dh

dα
+

∫ g(α)

h(α)

∂f

∂α
(x, α) dx .

Example 3.2 (Leibnitz rule). Consider the integral

I(α) =

∫ α

1

ln(x) exp(αx) dx

and compute its derivative with respect to α. To compute, we can directly apply the Leibnitz
rule to see that

dI

dα
= ln(α) exp(α2) +

∫ α

1

α ln(x) exp(αx) dx .

3.1.3 Numerical integration
The simplest numerical integration scheme is the rectangular rule (Riemann sum), which divides
the interval [a, b] into n equally spaced discrete points xi, i = 1, . . . , n, with x1 = a, xn = b and
∆x = (a− b)/n, and approximates the integral by

I ∼=
n∑
i=1

f (xi) ∆x .

This approach requires computation of the function values at the discrete points xi. Care should
be taken in formulating the function so that these values remain within a computable range. More
sophisticated methods with better accuracy include the trapezoidal rule, Simpson’s rule, and Gauss
rules.

Example 3.3 (Numerical integration). Suppose we wish to numerically integrate the function
f (x) = xm exp (−x) over the interval [0,∞]. If we are using a numerical scheme, we obvi-



3.1 Introduction 25

ously need to replace the unbounded domain with a finite domain [0, b], where b is sufficiently
large to achieve accuracy. An additional issue to pay attention to is, if m is large, then evalu-
ating the function in its given form can lead to numerical overflow when using finite precision
arithmetic (as computers do) since xm can be extremely large as x approaches b (which is sup-
posed to be large). Note, however, that at the same time exp (−x) approaches zero and thus
the product that forms the integrand is well behaved. To avoid working with the large numbers
produced by xm, we can rewrite the integrand in the form f (x) = exp[−x + m ln(x)]. Ob-
serve that the exponent −x+m ln (x) now is a much smaller number as x approaches b; it is
order b.

This example demonstrates that one needs to be careful in formulating the integrand in
software that performs numerical integration tasks. One should always look for possible cases
of underflow and overflow in sub-functions of the integrand that the computer must evaluate.
If detected, the integrand should be rewritten to avoid these numerical pathologies.

3.1.4 Complex functions
Special attention should be paid to integrands that have zero values outside an interval. The fol-
lowing example demonstrates this issue.

Example 3.4 (Probability density for the sum of two random variables). Consider two random
variables X1 and X2 having uniform distributions within the interval [0, 1]. Their probability
density functions are given by

fXi
(xi) =

{
1, 0 ≤ xi ≤ 1 , i = 1, 2
0, elsewhere.

One can show that the probability density function of Y = X1 +X2 is given by

fY (y) =

∫ 1

0

fX1 (y−x2)fX2 (x2) dx2.

Obviously, fY (y) is non-zero in the interval [0, 2].
Observe that the function fX1 (y−x2) is non-zero when its argument lies within the interval

[0, 1]. Otherwise, that function has a zero value. This affects the limits of the integration.
Since we must have 0 ≤ y − x2 ≤ 1, it follows that for any y we must have x2 ≤ y and
y−1 ≤ x2. Observe further that the second function, fX2 (x2), is zero outside the interval [0, 1].
Considering these limits, the above integral can be written with adjusted limits as follows:

fY (y) =

∫ min(1,y)

max(0,y−1)
fX1 (y−x2)fX2 (x2) dx2.
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We see that the limits depend on the selected value of y. The demarcation point clearly is
y = 1. Hence, we evaluate the integral as follows:

For 0 ≤ y ≤ 1:

fY (y) =

∫ y

0

1 × 1× dx = y .

For 1 ≤ y ≤ 2:

fY (y) =

∫ 1

y−1
1 × 1× dx = 2− y .

The complete solution then is

fY (y) =

{
y, for 0 ≤ y ≤ 1 ,
2− y, for 1 ≤ y ≤ 2 .

3.2 Check your understanding problems
1. Use integration by parts to evaluate the following integral. Note that you may have to use

the rule repeatedly to come to the final expression.

I(x) =

∫ x

0

y2 exp(−y) dy .

2. Consider Y = X1 + X2 + X3, where X1, X2, and X3 are uniformly distributed random
variables within the interval [0, 1] with probability density functions as in Example 3.4 above.
It can be shown that the probability density function of Y is given by

fY (y) =

∫ 1

0

∫ 1

0

fX1(y − x2 − x1)fX2(x2)fX3(x3) dx2 dx3 .

Derive an expression for fY (y).

3. Consider the integral

I(n, α) =

∫ ∞
0

e−αx
2

xn dx ,

where n ≥ 0.

(a) Use the Leibnitz rule to show that

I(n, α) = − ∂I
∂α

(n− 2, α) .

(b) Noting that I(0, α) = 1
2

√
πα−

1
2 , compute I(2, α).



Chapter 4

Partial differential equations

4.1 Introduction
A number of theories in structural engineering are best described using partial differential equa-
tions. Partial differential equations differ from ordinary differential equations in that the unknowns
depend on more than one independent variable. Common examples, among many, include vibra-
tional motion of a beam which depends on time and a spatial coordinate, and the deflection of a
plate which depends on (x, y) location on the plate.

4.2 Partial derivatives
Partial differential equations naturally make use of partial derivatives. Given a function of more
than one variable, say, f(x, y), then the partial derivative of f with respect to x is denoted

∂f

∂x
(x, y) .

The meaning of the notation is that one takes the derivative of f(x, y) with respect to x while
holding y constant. Similarly,

∂f

∂y
(x, y) ,

means the derivative of f(x, y) with respect to y while holding x constant.

Example 4.1 (Taking partial derivatives). Consider the function f(x, y, z) = x2y + yz + z.
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This is a function of three variables and has three first partial derivatives.

∂f

∂x
(x, y, z) = 2xy

∂f

∂y
(x, y, z) = x2 + z

∂f

∂z
(x, y, z) = y + 1 .

Higher order partial derivatives follow by taking derivatives of lower order derivative expres-
sions. It is useful to note that in physically motivated problems the order of partial differentiation
usually does not matter – mixed partial derivatives are equal to each other –

∂

∂y

(
∂f

∂x

)
︸ ︷︷ ︸

∂2f
∂y∂x

=
∂

∂x

(
∂f

∂y

)
︸ ︷︷ ︸

∂2f
∂x∂y

.

4.3 Partial differential equations

Partial differential equations describe a number of important physical phenomena as mentioned
above. Unfortunately, their solution tends to be rather complicated when done by hand, and thus
they are usually solved using numerical techniques, such as the finite element method. Notwith-
standing, it is instructive to have knowledge of how hand solutions are performed for the purposes
of being able to better interpret numerical solutions and to have an intuitive understanding of how
physical systems behave. For more extensive discussions on the solution of partial differential
equations than provided here see for example Hildebrand [1976, Chaps. 8 and 9].

In the case of ordinary differential equations of order n, the general solution is constructed
using a linear combination of n fixed functions and n arbitrary coefficients, where in the final
solution the arbitrary coefficients are determined from the initial/boundary conditions. Most im-
portantly with ordinary differential equations is the fact that one can determine the fixed functions
with knowledge of the form of the differential equations; see Chap. 2.

In the case of partial differential equations we are not so lucky. The general solutions involve
arbitrary functions of fixed functions of the independent variables. As a basic illustration, consider
the partial differential equation

∂u

∂t
+ 2

∂u

∂x
= 0 , (4.1)

where the unknown to be solved for is u(x, t) – with x and t being the independent variables.
Without detailing the solution steps, it is noted that the general solution is given in terms of an
arbitrary function f and the fixed function s(x, t) = 2t− x. In particular

u(x, t) = f(s) = f(2t− x)
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is a solution of (4.1) for any function f .1 The arbitrary function f , in the complete solution, is found
from the initial/boundary conditions. In relation to the solution of ordinary differential equations,
the function f takes the place of the arbitrary coefficients. The function s(x, t) plays the role of the
fixed functions and is determined from knowledge of the form of the differential equation. This
style of solution of partial differential equations is known as a characteristics solution – a.k.a., the
method of characteristics. A lot can be learned about the behavior of a physical system from a
characteristics solution, as it gives the general solution. More often, however, we are interested in
particular solutions to specific initial boundary value problems. In that case, the partial differential
equations that arise are often in a format that admits solutions using the method of separation of
variables.

4.3.1 Separation of variables
In the method of separation of variables we assume that the solution is composed of products of
functions, each being only a function of one of the independent variables. This special assumption
works for a large number of partial differential equations that occur in physical problems. While
the assumption seems rather special, if one can satisfy all the boundary/initial conditions, then one
is assured that one has the complete solution due to the fact that the solutions to many physical
problems are unique. The description of the method is best illustrated via a concrete example.

Before starting, it should be noted that overall the methodology is straightforward, but can be in
practice very cumbersome. The payoff for the effort is an analytic solution to the problem that can
examined for its functional properties. In most practical cases, the method can not be carried out
to completion and one must resort to numerical solution methods (like the finite element method);
however, for a certain class of problems it is very effective. Below we give one example with the
details of most of the steps.

Example 4.2 (Separation of variables for Laplace’s equation). Consider the partial differential
equation (Laplace’s equation)

∂2u

∂x2
+
∂2u

∂y2
= 0 (4.2)

over the square domain 0 < x < L and 0 < y < L. Further assume the boundary conditions
u(x, 0) = u(x, L) = u(L, y) = 0 and u(0, y) = sin(4πy/L).

The method of separation of variables begins with assuming that the solution can be written
in the form

u(x, y) = X(x)Y (y) ,

1We can verify this by plugging this form of the solution into (4.1):

∂u

∂t
+ 2

∂u

∂x
=

df

ds

∂s

∂t
+ 2

df

ds

∂s

∂x
=

df

ds
× (2− 2× 1) = 0 .
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where X and Y are functions of only x and y, respectively. The validity of this assumption
can only be verified by showing that a solution to Laplace’s equation of this form is possible
and that the boundary conditions can also be satisfied.

If we plug our assumption into (4.2), then we find that

X ′′Y +XY ′′ = 0 ,

where primes have been used to denote derivatives of functions of one variable (with respect
to that variable). Rearranging gives

X ′′

X
= −Y

′′

Y
. (4.3)

Examining (4.3), one observes that the left-hand side is a function of x only and the right-hand
side is a function of y only. The only way for this to be true is if both sides are equal to the
same constant. Let us call that constant k, so that

X ′′

X
= −Y

′′

Y
= k ⇒

{
X ′′ − kX = 0
Y ′′ + kY = 0 .

These two ordinary differential equations have the general solutions:

X(x) = A exp(−
√
kx) +B exp(

√
kx)

Y (y) = C cos(
√
ky) +D sin(

√
ky) ,

where A,B,C and D are arbitrary constants. If we now employ the boundary condition that
u(x, 0) = 0, then we see that C = 0. Using the boundary condition that u(x, L) = 0, we see
that either D = 0, which will give the trivial solution u = XY = X × 0 = 0 which we do not
want, or sin(

√
kL) = 0. From this later condition we see that the separation constant k is not

arbitrary, rather we must have √
kL = nπ ,

where n = 1, 2, 3, . . ..
Taking stock of where we are, we see that any functions of the form

(An exp(−nπx/L) +Bn exp(nπx/L)) sin(nπy/L)

will satisfy our partial differential equation and the boundary conditions for y = 0 and y = L.
Thus the most general solution we can construct from our starting assumption looks like

u(x, y) =
∞∑
n=1

(An exp(−nπx/L) +Bn exp(nπx/L)) sin(nπy/L) .
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Note that An and Bn are arbitrary constants. We will use the remaining two boundary condi-
tions to try and determine them.

The boundary condition at x = L tells us that

0 =
∞∑
n=1

(An exp(−nπ) +Bn exp(nπ)) sin(nπy/L) .

For this to be universally true, we must have

An = −Bn exp(2nπ) ,

implying

u(x, y) =
∞∑
n=1

Bn (− exp(2nπ) exp(−nπx/L) + exp(nπx/L)) sin(nπy/L) .

The last remaining boundary condition allows us to determine the only remaining un-
known, Bn. At x = 0 we have the condition that

sin(4πy/L) =
∞∑
n=1

Bn (− exp(2nπ) + 1) sin(nπy/L) . (4.4)

This indicates that Bn (− exp(2nπ) + 1) are the Fourier coefficients for a sine series represen-
tation of sin(4πy/L). To determine the needed expressions for the coefficients, we note the
properties that

L/2 =

∫ L

0

sin2(nπy/L) dy

0 =

∫ L

0

sin(nπy/L) sin(mπy/L) dy (m 6= n) .

To exploit these properties we multiply both sides of (4.4) by sin(mπy/L) and integrate from
0 to L. This gives∫ L

0

sin(4πy/L) sin(mπy/L) dy = Bm (− exp(2mπ) + 1)L/2 .

Solving the integral and rearranging gives

B4 =
1

1− exp(8π)

and all other Bm = 0.



32 Partial differential equations

The final solution is then

u(x, y) =
1

1− exp(8π)
(exp(4πx/L)− exp(8π) exp(−4πx/L)) sin(4πy/L) .

This function satisfies the partial differential equation and all the boundary conditions.
It should be noted that normally when one computes a solution via separation of variables,

the final expression is usually in the form of an infinite series. Here we did not obtain a series
solution because the Fourier representation of the last boundary condition only involved one
term – which is a rather special situation.

4.4 Check your understanding problems
1. Consider the function f(x, y, z) = x4y2z + yz and compute

(a) ∂f/∂x.

(b) ∂f/∂y.

(c) ∂f/∂z.

(d) ∂2f/∂x∂y.

(e) ∂3f/∂x2∂z.

2. Consider the partial differential equation, defined for y > 0,

∂u

∂x
+ y

∂u

∂y
= 0 .

Verify, by plugging into the given partial differential equation, that the general solution is of
the form u(x, y) = f(s) where s(x, y) = x− ln(y), and f is an arbitrary function.

3. Consider the same problem as in Example 4.2, except that the boundary conditions are now
u(x, 0) = u(x, L) = u(L, y) = 0 and u(0, y) = 100. Solve, using a separation of variables
method, for u(x, y). In the solution process, you should ignore the incompatibility in the
boundary conditions at the points (0, 0) and (0, L). Your final answer will be in the form of
an infinite series.



Chapter 5

Elements of statics and dynamics

5.1 Introduction

The derivation of the force-deformation relations for the constituent elements of discrete structural
models is based on the kinematics and the equilibrium of a typical element under different defor-
mation and stress states. The relation between the force and deformation variables results from the
constitutive material response, which is here assumed to be linear elastic. This chapter provides
an overview of these relations for a few simple deformation states. Furthermore, the chapter offers
a very brief review of Newton’s second law and of the concepts of linear and angular momentum,
as well as the concepts of potential and kinetic energy. For further details the reader can consult
Govindjee [2013] or Lubliner and Papadopoulos [2014], and Gross et al. [2014].

5.2 Common deformation modes

There are three fundamental modes of deformation of structural members. Axial motion, torsional
motion, and bending motion. The theories used to describe these modes of deformation all consist
of a set of kinematic relations, a set of equilibrium relations, and a set of constitutive relations.
Each triple comprises a complete set of equations to describe the element response. For each
deformation mode, there are also additional relations that allow one to infer detailed response
quantities for the structural members. Below we review the main equations without derivation.
For a more detailed discussion please consult, for example, Govindjee [2013, Chapters 2, 7, and
8].

5.2.1 Axial extension

The axial mode of deformation occurs for example in truss elements, reinforcing bars, piers, and
piles. The fundamental assumption, independent of the complexity of the member, is that plane
sections remain plane.
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x

u(x)

Figure 5.1: Bar motion and coordinates. Axial coordinate x, cross-sectional displacement u(x).

x
N(x)

b(x)

Figure 5.2: Bar resultants and loads. Distributed load b(x), internal force N(x).

Kinematics

Referring to Fig. 5.1, the motion of the bar is given by a function u(x) that assigns to each cross-
section an axial displacement. The strain in the bar is the normal strain in the x-direction

ε =
du

dx
. (5.1)

Equilibrium

The important stress resultant in axial deformation is the internal force in the x-direction given by
a function N(x); see Fig. 5.2. Assuming that the bar is subjected to distributed loads b(x) (force
per unit length in the x-direction), then the equilibrium equation for the bar is given as

dN

dx
+ b = 0 (5.2)

in the static case. In the dynamic case, the zero on the right-hand side is replaced by ρA∂2u/∂t2,
where ρ is the mass density and A is the cross-sectional area.

Material response

Assuming for simplicity a homogeneous cross-section, the system of equations is completed by a
constitutive relation connecting the internal force to the strain

N = EAε , (5.3)

where it is assumed that the material is linear elastic with Young modulus E.
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Equations (5.1)–(5.3) describe the complete response of a homogeneous elastic bar under axial
deformation. With slight modifications a non-prismatic bar with variable cross-section A(x) can
be treated with virtually the same equations, if it is noted that the internal force is related to the
axial stress in the bar via

N(x) =

∫
A(x)

σ dA ,

where σ is the normal stress on the cross-section A(x) located at x. This relation also allows one
to correctly treat the case of composite cross-sections.

5.2.2 Torsion: Circular sections
The fundamental assumption of torsional motion for circular bars, independent of the complexity
of the member, is that plane sections remain plane and simply rotate.

Kinematics

Referring to Fig. 5.3, the torsional motion of the bar is given by a function ϕ(x) that assigns to
each cross-section a rotation about the x-axis. The primary strain in the bar is the shear strain in
the xθ-plane

γxθ = γ = r
dϕ

dx
. (5.4)

x

ϕ(x)

ra a

a a

Figure 5.3: Torsion bar motion and coordinates. Axial coordinate x, rotation of cross-sections
ϕ(x), radial coordinate r.
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Equilibrium

The important stress resultant in torsion is the internal torque about the x-axis given by a function
T (x). Assuming that the bar is subjected to distributed torsional loads t(x) (torque per unit length
in the x-direction), then the equilibrium equation for the bar is given as

dT

dx
+ t = 0 (5.5)

in the static case.

x

T(x)

t(x)

Figure 5.4: Torsion bar resultants and loads. Distributed load t(x), internal torque T (x). Double-
headed arrows indicate toques according to right-hand rule with thumb aligned with arrows.

Material response

Assuming for simplicity a homogeneous cross-section, the system of equations is completed by a
constitutive relation connecting the internal force to the angle of twist per unit length

T = GJ
dϕ

dx
, (5.6)

where it is assumed that the material is linear elastic with shear modulus G and the polar moment
of inertia is J =

∫
A
r2 dA.

Equations (5.4)–(5.6) describe the complete response of a homogeneous circular elastic bar
under torsional deformation. With slight modifications a non-prismatic shaft can be treated with
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virtually the same equations, if it is noted that the internal torque is related to the shear stress over
the cross section with

T (x) =

∫
A(x)

τ dA ,

where τ is the shear stress in the θ-direction of the cross-section, σxθ. This latter relation also
allows for the treatment of composite cross-sections.

5.2.3 Bending
With regard to the bending of beams we review here the relations appropriate for describing the
bending of a beam about a single axis. Further we only consider the case where the given axis is a
principal axis of the beam cross-section. As with axial deformation and torsional deformation, the
fundamental assumption of bending motion, independent of the complexity of the beam’s cross-
section, is that plane sections remain plane – only displacing and rotating.

Kinematics

Referring to Fig. 5.5, bending deformations are characterized by two functions that describe (1) the
deflection of the neutral axis v(x) and (2) the rotation of the beam’s cross-sections θ(x). Within
the assumptions of Bernoulli-Euler beam theory these two functions are not independent of each
other. They are connected by the relation

θ =
dv

dx
. (5.7)

x

v(x)

y

θ(x)

a

a

y

z

aa

Figure 5.5: Bending motion and coordinates. Axial coordinate x, vertical displacement of cross-
sections v(x), rotation of cross-sections θ(x), cross-sectional coordinates y, z with origin deter-
mine by axial force equilibrium.

The primary strain in the beam is the normal strain in the x-direction given by

ε = −yκ , (5.8)
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x

y

V(x)

M(x)

w(x)

Figure 5.6: Beam resultants and loads. Distributed load w(x), internal shear force V (x), internal
moment M(x).

where κ is the beam curvature
κ ≈ dθ/dx . (5.9)

with the approximation holding for small angles θ.

Equilibrium

In beams there are two equilibrium relations to observe. First, the moment equilibrium about the
z-axis requires that

dM

dx
+ V = 0 , (5.10)

where M(x) is the internal moment and V (x) is the internal shear. Second, the force equilibrium
in the y-direction requires that

dV

dx
+ w = 0 , (5.11)

where w(x) represents any distributed loads on the beam in the y-direction; see Fig. 5.6.

Material response

Assuming for simplicity a homogeneous cross-section, the system of equations is completed by a
constitutive relation connecting the internal moment to the curvature. To arrive at this relation we
start with the definition of the bending moment M as

M =

∫
A

−yσ dA . (5.12)

Under the assumption of linear elastic material response with Young modulus E the normal stress
σ = σxx is a linear function of the strain ε so that

M =

∫
A

−y(Eε) dA . (5.13)
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Substituting the kinematic relation from (5.8) gives

M = Eκ

∫
A

y2 dA , (5.14)

if the modulusE does not depend on the area coordinates, as is the case for a homogeneous section.
In any case the curvature κ is only a function of x, so that it can be taken outside the integral. With
the definition of the second moment of area about the z-axis (also known as bending moment of
inertia about the z-axis) I =

∫
A
y2 dA the last equation gives the desired relation between the

bending moment and the curvature of the section at x

M(x) = EIκ(x) . (5.15)

Equations (5.7)–(5.15) describe the complete response of a homogeneous elastic beam under-
going a bending deformation. With slight modifications a non-uniform beam can be treated with
virtually the same relations, if it is noted that the internal moment is related to the normal stress σ
by the generalization of (5.12)

M(x) =

∫
A(x)

−yσ dA .

It should also be observed that the location of the neutral axis, the location from which the y
coordinate is measured, is determined from force equilibrium in the x-direction:

N(x) =

∫
A

σ dA ,

which leads to the relation

N(x) =

∫
A

E(−yκ) dA = −Eκ(x)

∫
A

y dA ,

assuming again homogeneity of the material for simplicity. Because N(x) = 0 in the absence of
axial loads this requires that ∫

A

y dA = 0 ,

which defines the location of the centroid of the cross-section. As long as the y-axis is measured
from the centroid, the resultant of the normal stresses under purely flexural deformation is zero. In
conclusion, the neutral axis under pure flexure with linear elastic material response coincides with
the centroid of the cross section for homogeneous cross-sections. (For non-homogeneous material
properties, these concepts need to be adjusted by leaving E underneath the integral signs.)

5.3 Section properties
The generalization of the kinematic and the equilibrium relations from the preceding section to the
case of biaxial bending for a general section without axes of symmetry leads us to the general def-
inition of the centroid, the first and second moments of area and the determination of the principal
axes for the section.



40 Elements of statics and dynamics

5.3.1 Centroid
The assumption of plane sections remaining plane under biaxial bending leads to the following
expression for the normal strain

ε = −yκz + zκy , (5.16)

where κz is the curvature about the z-axis and κy the curvature about the y-axis for the section
in Fig. 5.7. Note that the orthogonal y-z axis orientation assumes that the x-axis of the beam
is normal to the yz-plane and points towards the viewer in accordance with the right hand rule.
Equation (5.16) assumes that the plane passes through the point a in Fig. 5.7, which coincides with
the centroid of the cross section (for a homogeneous section with no axial load), as will be shown
in the following. The sign convention for (5.16) uses the right hand rule for the curvatures (which
are rotations per unit of length) and accounts for the fact that a positive curvature about the z-axis
gives rise to a negative strain at point m in Fig. 5.7, located in the positive quadrant of the section
coordinate system, while a positive curvature about the y-axis gives rise to a positive strain at the
same point.

y

z a

m

y

z

Figure 5.7: General cross section with principal axes y′-z′.

Under linear elastic material response with Young modulus E the normal stress σ = σxx is
given by σ = Eε and generates bending moments Mz and My about the section axes according to

Mz =

∫
A

−yσ dA

My =

∫
A

zσ dA .

(5.17)

To ensure that the normal force N(x) is zero requires that

N(x) =

∫
A

σ dA = 0 → −Eκz
∫
A

y dA+ Eκy

∫
A

z dA = 0 .

For the last equation to be satisfied for any curvature values requires that∫
A

y dA = 0 and
∫
A

z dA = 0 . (5.18)
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Consequently, a point a of the cross section in Fig. 5.7 that satisfies the conditions in (5.18) coin-
cides with the centroid. Because σ = 0 at y = 0, z = 0 for the strain distribution in (5.16) the
neutral axis of the section under biaxial bending passes through point a.

5.3.2 Moments of inertia and principal axes
Returning to the determination of the bending moments Mz and My in (5.17) and substituting the
normal stress σ in terms of the normal strain ε and then the curvatures κz and κy according to
(5.16) gives

Mz =

∫
A

−yE(−yκz + zκy) dA

My =

∫
A

zE(−yκz + zκy) dA

→
Mz = E

(∫
A

y2 dA

)
κz − E

(∫
A

yz dA

)
κy

My = −E
(∫

A

yz dA

)
κz + E

(∫
A

z2 dA

)
κy .

With the definition of the second moments of area for the cross section

Iz =

∫
A

y2 dA Iy =

∫
A

z2 dA Izy = Iyz =

∫
A

yz dA , (5.19)

the last set of equations can be written in compact form as(
Mz

My

)
=

[
Iz −Izy
−Iyz Iy

](
κz
κy

)
, (5.20)

which furnishes the relation between the curvatures and the resulting bending moments under
biaxial flexure. Equation (5.20) shows that for a general section with an arbitrary set of orthogonal
reference axes y and z, as in Fig. 5.7, a curvature about the z-axis gives rise to moments about
both section axes y and z. It is possible, however, to select a pair of orthogonal axes y′-z′ for the
section so that a curvature about one axis gives rise only to a moment about the same axis, i.e. that
the flexural response about one axis is uncoupled from the response about the axis orthogonal to it.
The determination of such a pair of axes results from the solution of a standard eigenvalue problem
of the form (1.2) with

A =

[
Iz −Izy
−Iyz Iy

]
.

Because A is symmetric, the two eigenvectors of this problem are orthogonal and give the direc-
tions y′ and z′, which are called the principal axes of the cross-section as schematically shown in
Fig. 5.7. The corresponding eigenvalues λ1 and λ2 are equal to the principal moments of inertia
Iz′ and Iy′ , respectively.

5.4 Shear and moment diagrams
It is possible to solve the kinematic relation (5.9) separately from the equilibrium relations. After
supplying the necessary boundary conditions for a beam segment under flexure it leads to the
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curvature-area method for determining the deformed shape of frame elements from the curvature
distribution κ(x). This will be discussed in the course on structural analysis.

The solution of the differential equilibrium relations in (5.10) and (5.11) leads to the determi-
nation of the bending moment distribution M(x) of frame elements under flexure after satisfying
the boundary conditions of the problem with the end moments of the beam segment. A common
way of presenting the solution of (5.10) and (5.11) is in the form of bending moment and shear
diagrams, as will be discussed next.

The differentiation of (5.10) leads to the following equation after the substitution of (5.11)

d2M

dx2
− w(x) = 0 . (5.21)

Its solution consists of the homogeneous term with integration constants to be determined from the
boundary conditions and the particular term, which depends on the form of w(x).

We establish each term separately.

x

y

i j

L

EI

w

wL
2

wL
2

iM jM

Figure 5.8: Homogeneous and particular solution of beam segment.

The homogeneous solution is

d2Mh

dx2
= 0 → Mh(x) = C1 x+ C2 ,

with two integration constants C1 and C2. These result from the moments at the boundary of the
beam segment of length L in Fig. 5.8. Denoting the end at x = 0 with i and the opposite end with
j we have

Mh(x = 0) = Mi = C1(0) + C2

Mh(x = L) = Mj = C1(L) + C2

→
C2 = Mi

C1 =
Mj −Mi

L

,

so that the homogeneous solution becomes

Mh(x) = Mi

(
1− x

L

)
+Mj

x

L
. (5.22)
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In the absence of transverse loads over the beam segment the moment distribution is linear.
The general form of the particular solution under a uniformly distributed load w in Fig. 5.8 is

d2Mp

dx2
= −w → Mp(x) = D1 x+D2 −

1

2
wx2 ,

noting that the uniformly distributed load w in Fig. 5.8 is negative. Note that this form of the
particular solution also includes D1x + D2 – the form of the homogeneous solution. We do this
here because our convention in structural analysis is to apply our boundary conditions directly
to the homogeneous solution before determining the particular solution; cf. Chapter 2 where we
applied boundary/initial conditions after adding the homogeneous and particular solutions together
(either procedure is valid). Since we have made the homogeneous solution satisfy the boundary
conditions, the particular solution needs to satisfy the homogeneous boundary conditions Mi = 0
and Mj = 0, which gives

Mp(x) =
wL2

2

(
1− x

L

) x
L
.

The complete moment distribution under the uniform element load w then is

M(x) = Mh(x) +Mp(x) = Mi

(
1− x

L

)
+Mj

x

L
+
wL2

2

(
1− x

L

) x
L
,

i.e. a parabolic distribution.
The shear force can be similarly separated into the homogeneous and the particular solution

with the following result

Vh(x) = −dMh

dx
= −C1 =

Mi −Mj

L

Vp(x) = −dMp

dx
=
wL

2

(
1− 2x

L

) .
Note that the shear force is constant for the homogeneous solution with end values equal to

Vhi = Vhj =
Mi −Mj

L
,

while it is linear for the particular solution with end values equal to

Vpj = −Vpi =
wL

2
,

as shown in the lower half of Fig. 5.8.
The preceding derivations show that it is possible to determine the shear and bending moment

distribution of any beam segment from the moments at the ends of the beam segment and the
transverse loads in the segment. While the loading is given at the start of any analysis, the moments
at the ends of the beam segments can only be determined with methods of structural analysis, which
require the simultaneous satisfaction of the structure equilibrium, the structure kinematics, and the
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Figure 5.9: Two conventions for displaying the moment diagram of a beam segment

force-deformation relations of the constituent elements of the structural model. Such methods are
discussed in courses of structural analysis.

Once the moments at the ends of each beam segment are established, it is convenient to display
the results for the moment and shear distribution in terms of bending moment and shear diagrams,
to facilitate the response evaluation and the subsequent design of the structural members.

Whereas the sign of the bending moments and shears is uniquely defined from (5.9) and (5.10),
there are two ways for displaying the moment diagram of a beam segment. Fig. 5.9, which displays
the homogeneous solution separately from the particular solution under a uniformly distributed
load w, assumes that the moment Mi is negative while the moment Mj is positive.

wL2

8

xi j

M x( )

L

Mi

Mj

V x( )

Mm

Vi

Vjxm

_

+x

Figure 5.10: Combined bending moment and shear diagram for the beam segment in Fig. 5.9(a).

For convention A in Fig. 5.9(a) the positive moment axis points downward, so that the moment
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is drawn on the tension side of the beam.
For convention B in in Fig. 5.9(b) the positive moment axis points upward, consistent with the

definition of a positive y-axis in Fig. 5.6.
It is not important which convention is used to display the moment diagrams, as long as the

diagram is accompanied by an indication of which way the beam bends over the corresponding
portion of the beam, as illustrated in Fig. 5.9.

The following examples adopt the convention A for the bending moments, as shown in Fig. 5.10,
which displays the diagram for the total bending moment M(x) = Mh(x) +Mp(x) for Fig. 5.9(a)
along with the shear force diagram, which is displayed with the positive shear axis pointing up-
ward, consistent with the positive y-axis in Fig. 5.6. This way of displaying the moment and shear
diagram has the advantage that the shear force value corresponds ”visually” to the slope of the
bending moment diagram if one disregards the way the the moment axis points in Fig. 5.10. This
way the reversal of the moment axis for the slope evaluation accounts for the negative sign of the
moment slope in the equilibrium equation (5.9).

According to (5.9) the bending moment has a local extremum at the location of zero shear. This
allows us to determine the moment Mm in Fig. 5.10 by first determining the location xm of zero
shear. To this end we note that

xm =
|Vi|
w

,

and that the change ∆M of the bending moment between the end i and the section m is equal to
the area under the shear force diagram between these two sections, i.e.

∆M =
1

2
|Vi|xm =

|Vi|2

2w
,

so that the maximum moment Mm at section m is

Mm = − |Mi|+ ∆M = − |Mi|+
|Vi|2

2w
.

We demonstrate these concepts with two simple structural models for which the internal force
state depends only on equilibrium. Such structural models are called statically determinate.

Example 5.1 (Moment diagram for simply supported beam with overhang). The purpose of
this example is the determination of the moment distribution in the simply supported beam
with overhang in Fig. 5.11. The beam is subjected to a uniformly distributed load w = −5 and
a concentrated force of 20 units at the tip of the overhang. Using virtual cuts at the supports
and at the middle of the free span we separate the structure into 3 free bodies a, b and c. The
three cuts form three free body slices, which are shown separately below the free bodies a, b,
and c. From the vertical force equilibrium of the middle slice we conclude that the transverse
force is the same at both faces of the slice. We denote it with V1. From moment equilibrium of
the middle and the right slice we conclude that the bending moment at both faces of each slice
is the same. We denote these with M1 for the middle slice and M2 for the right slice.
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Figure 5.11: Simply supported beam with overhang.

The moment equilibrium of the free body c about the left end gives

M2 = −20(5) = −100 .

The moment equilibrium of the free body a about the left end gives

V1(10) +M1 + w(10)
10

2
= 0 .

The moment equilibrium of the free body b about the right end gives

V1(10)−M1 +M2 = 0 .

Adding up the last two equations gives

V1(20) + w(10)
10

2
+M2 = 0 → V1 = −w(2.5) +

100

20
= 17.5 ,

which when substituted into one of the two initial equations gives

M1 = V1(10) +M2 = 75 .
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Because w = 0 for the free bodies b and c the moment distribution in these is linear. With a
constant w = −5 along the free body a the moment distribution is parabolic. Fig. 5.11 shows
the resulting bending moment diagram. The determination of the shear diagram and the value
of the maximum bending moment is left as an exercise for the reader.

Example 5.2 (Moment diagram of three hinge frame). The aim is the determination of the
moment diagram for the three hinge frame in Fig. 5.12(a) under the action of a vertical force
of 20 units and a horizontal force of 40 units. The figure also shows the orientation of the
x-axis along the frame members. Suitable virtual cuts in Fig. 5.12(b) isolate free bodies for
the columns and the girder and the two beam-column joints. A further virtual cut separates the
girder into two free bodies of equal length with an additional joint free body at mid-span. At the
cuts internal forces arise consisting of the normal force N , the shear force V , and the bending
moment M . Only those internal forces that figure in the subsequent calculations are labeled.
The repetition of labels is kept to a minimum to reduce clutter, since the relation between the
internal forces in the figure is clear from the consideration of free body equilibrium.

8 8

10

40
20

x

x x

(a) Structure

8 8

10

1M 2M

a

b

c

2b1b

1N

1N

1N

1N
4V

4V3V

3V

2V

2V1V 1V

40

20

(b) Element and joint free bodies

Figure 5.12: Equilibrium for three hinge frame.

−V1 − 20 + V2 = 0 .

The moment equilibrium of the left girder half free body about either end gives

V1(8)−M1 = 0 .
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The moment equilibrium of the right girder half free body about either end gives

V2(8) +M2 = 0 .

Using the last two equations to substitute for the shear forces in the first equation gives

−M1

8
− M2

8
− 20 = 0 → M1 +M2 = −160 .

From the horizontal force equilibrium of the entire girder free body we conclude that the axial
force N1 is the same at either end. The horizontal force equilibrium of the two beam-column
joint free bodies gives

N1 + V3 = 0

40 + V4 −N1 = 0
→ 40 + V3 + V4 = 0 .

The moment equilibrium of the left column free body about either end gives

V3(10) +M1 = 0 .

The moment equilibrium of the right column free body about either end gives

V4(10)−M2 = 0 .

Using the last two equations to substitute for the shear forces V3 and V4 in the first equation
gives

40 +
M2

10
− M1

10
= 0 → M2 −M1 = −400 .

We are left with two equations for the moments M1 and M2:

M1 +M2 = −160

M2 −M1 = −400 .
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280
120

Figure 5.13: Moment diagram for three hinge frame under loading in Fig. 5.12(a).

The first moment equation reflects the gravity load resistance of the three hinge frame and
the second the lateral load resistance. The solution of these two equations givesM1 = 120 and
M2 = −280. Fig. 5.13 shows the bending moment diagram. Note that the bending moment
is positive in the left column and the left half of the girder, but negative in the right half of
the girder and in the right column, on account of the direction of the x-axis. Both columns,
however, bend as shown in the figure. This example demonstrates clearly the importance of
clearly identifying the x-axis of each element, which determines the positive shear and moment
direction. Finally, it is best to communicate the results by sketching the way members bend.

The determination of the shear diagram is left as an exercise for the reader.

5.5 Beam stiffness coefficients

Combining the kinematic relations in (5.7) and (5.9) leads to

κ =
d2v

dx2
. (5.23)

Substituting into the bending moment-curvature relation for linear elastic material response in
(5.15) gives

M(x) = EI(x)
d2v

dx2
. (5.24)

Finally, substituting this into the equilibrium equation in (5.21) withw(x) = 0 gives the differential
equation (DE) for beam flexure

d2

dx2

[
EI(x)

d2v

dx2

]
= 0 , (5.25)

whose solution with appropriate boundary conditions furnishes the relation between the end forces
of a beam segment and the corresponding kinematic variables.



50 Elements of statics and dynamics

Under the assumption that the beam element is homogeneous and prismatic, i.e. that EI(x) =
EI the DE in (5.25) becomes

EI
d4v

dx4
= 0 , (5.26)

whose general solution is a cubic polynomial

v(x) = C1x
3 + C2x

2 + C3x+ C4 . (5.27)

For determining the integration constants C1, . . . , C4 we need to impose boundary conditions on
the function or its derivatives. For a beam element of length L with both ends i and j continuous
we can imposed conditions on the translation v and on the rotation θ at the ends, i.e.

v(x = 0) = vi ,

dv

dx

∣∣∣∣
x=0

= θi ,

v(x = L) = vj ,

dv

dx

∣∣∣∣
x=L

= θj .

The kinematic variables vi, vj , θi and θj are the degrees-of-freedom of the beam element. It is
convenient to collect these in a displacement vector u with four components according to Fig. 5.14.

x

y

i j

L

x

y

i j

p1
p2

p3p4

u1
u2

u3u4

Figure 5.14: Degrees-of-freedom and corresponding force variables for beam element.

Expressing the boundary conditions in terms of the general solution in (5.27) gives

v(x = 0) = vi = C1(0) + C2(0) + C3(0) + C4 ,

dv

dx

∣∣∣∣
x=0

= θi = 3C1(0) + 2C2(0) + C3 ,

v(x = L) = vj = C1(L
3) + C2(L

2) + C3(L) + C4 ,

dv

dx

∣∣∣∣
x=L

= θj = 3C1(L
2) + 2C2(L) + C3 .
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(b) Stiffness coefficients for uj = 1, θj = 1

Figure 5.15: Stiffness coefficients for beam element with continuous ends

The solution of the above equations gives the four integration constants C1, . . . , C4 in terms of
the components of u. Substituting these into (5.27) gives the solution of the DE that satisfies the
boundary conditions of the beam element with continuous ends. It is

v(x) =
(
2ξ3 − 3ξ2 + 1

)
ui +

(
ξ3 − 2ξ2 + ξ

)
θiL+

(
−2ξ3 + 3ξ2

)
uj +

(
ξ3 − ξ2

)
θjL , (5.28)

where ξ = x/L. We can now express the generalized end forces p in Fig. 5.14 in terms of the
general solution in (5.28) by noting that

M(x = 0) = EI
d2v

dx2

∣∣∣∣
x=0

= −p2

M(x = L) = EI
d2v

dx2

∣∣∣∣
x=L

= p4 ,

noting the difference in the positive sign convention for p2 relative to the corresponding bending
moment M(x = 0). Substituting the solution from (5.28) gives

p2 =
6EI

L2
vi +

4EI

L
θi −

6EI

L2
vj +

2EI

L
θj

p4 =
6EI

L2
vi +

2EI

L
θi −

6EI

L2
vj +

4EI

L
θj .

(5.29)

The end forces p2 and p4 are shown for a unit value of each beam degree-of-freedom in Fig. 5.15.
Denoting the rotation of the line connecting the end points with β and noting that this chord rotation
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is given by

β =
vj − vi
L

simplifies the force-displacement relations in (5.29) to

p2 =
2EI

L
(2θi + θj − 3β)

p4 =
2EI

L
(θi + 2θj − 3β) .

(5.30)

The relations in (5.30) are known as slope-deflection equations. Note that a positive chord rotation
β is consistently defined as counter-clockwise like all rotations in the plane of the beam.

The most convenient way for establishing the remaining end forces p1 and p3 is to satisfy the
moment equilibrium of the free body for the beam element in Fig. 5.14. It gives

p1 =
p2 + p4

L

p3 = −p2 + p4

L
.

Substituting the expressions for p2 and p4 from (5.29) gives

p1 =
12EI

L3
vi +

6EI

L2
θi −

12EI

L3
vj +

6EI

L2
θj

p3 = −12EI

L3
vi −

6EI

L2
θi +

12EI

L3
vj −

6EI

L2
θj .

(5.31)

These forces are shown for a unit value of each beam degree-of-freedom in Fig. 5.15.
After introducing the components of the displacement vector u for vi, θi, vj and θj and com-

bining the results from (5.29) and (5.31) gives

p1

p2

p3

p4


=



12EI

L3

6EI

L2
−12EI

L3

6EI

L2

6EI

L2

4EI

L
−6EI

L2

2EI

L

−12EI

L3
−6EI

L2

12EI

L3
−6EI

L2

6EI

L2

2EI

L
−6EI

L2

4EI

L





u1

u2

u3

u4


,

which can be written in compact form as

p = ku (5.32)

with k the stiffness matrix of the homogeneous, prismatic beam element. The components of the
stiffness matrix are known as stiffness coefficients.
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The force-displacement relation of a beam element with only one end continuous, because of
the presence of a flexural hinge at the other end, can be established by a similar process, noting
that in this case the boundary conditions are

v(x = 0) = vi

dv

dx

∣∣∣∣
x=0

= θi

v(x = L) = vj

d2v

dx2

∣∣∣∣
x=L

= 0

or

v(x = 0) = vi

d2v

dx2

∣∣∣∣
x=0

= 0

v(x = L) = vj

dv

dx

∣∣∣∣
x=L

= θj .
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Figure 5.16: Stiffness coefficients for beam element with continuous end at i and hinge at j.

We do not pursue the details of the solution in the following and offer it instead as an exercise
for the reader. The resulting force-displacement relations for a beam element with a continuous
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end at i and a flexural hinge at j are

p1

p2

p3

p4


=



3EI

L3

3EI

L2
−3EI

L3
0

3EI

L2

3EI

L
−3EI

L2
0

−3EI

L3
−3EI

L2

3EI

L3
0

0 0 0 0





u1

u2

u3

u4


. (5.33)

These forces are shown for a unit value of each beam degree-of-freedom in Fig. 5.16. The force-
displacement relations for a beam element with a continuous end at j and a flexural hinge at i can
be obtained by exchanging the second and the fourth rows as well as the second and the fourth
columns of the stiffness matrix in (5.33).

It is clear from the results in (5.33) that the rotation at end j does not affect the element response
and that the moment at end i is zero.

Example 5.3 (Lateral stiffness of one story frame models). Fig. 5.17 shows two structural
models approximating one-story frame response. In both models the girder is assumed to be
infinitely rigid in flexure.

h

l

,1U 1P

(a) Shear beam model for one-story frame

h

l

,1U 1P

(b) Rigid girder and pinned columns at base

Figure 5.17: Two models for one story frame.

In the first model in Fig. 5.17(a) the columns are fixed at the base. This model is known
as shear beam model. Under a lateral translation U 1 of the girder the column rotation is zero
at the top and at the base, so that the deformed shape of the columns corresponds to the upper
deformed shape of Fig. 5.15(a). The lateral force P 1 in this case is

P 1 =
12EI

h3
U 1 ,
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and the bending moment at the top and at the base of each column is

|Mt| = |Mb| =
6EI

h2
U 1 .

In the second model in Fig. 5.17(b) the columns are pinned at the base. In this case the
deformed shape of the columns corresponds to the topmost deformed shape in Fig. 5.16. The
lateral force P 1 in this case is

P 1 =
3EI

h3
U 1 ,

and the bending moment at the top of each column is

|Mt| = |Mb| =
3EI

h2
U 1 .

5.6 Rotational motion

5.6.1 Newton’s 2nd law
Newton’s second law states that the net force on an object is equal to the time rate of change of
its linear momentum, i.e. the mass of the object multiplied by the acceleration of the object. For
translational motion, this can be written in vector form as:

F = ma = mẍ ,

where F is a translational force vector, m is the translational inertia (i.e. mass) and is assumed to
be constant, and a = ẍ is a translational acceleration. For rotational motion of rigid bodies, the
Cauchy-Euler extension of Newton’s second law, principle of angular momentum, is:

T = Jα = Jθ̈ , (5.34)

where T is a torque (component) about a given axis, J is the rotational inertia (i.e. mass moment of
inertia) about the same axis and α = θ̈ is the rotational acceleration (component) oriented along the
axis. In these notes we only consider the simplest setting of rotation about a fixed axis. In general
J is a matrix/tensor and the rotational acceleration α is a vector; see e.g. Gross et al. [2014, Section
3.4].

5.6.2 Rotational inertia
The general equation for rotational inertia is:

J =

∫
r2dM , (5.35)

where r is the shortest distance of a small mass dM from the axis of rotation.
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Figure 5.18: Pendulum consisting of a sphere connected to a rigid rod with a rotational spring at
the pivot point.

For example, in Fig. 5.18 a sphere with a translational inertia (i.e. mass) of m is attached to the
end of a rigid rod of length L. The sphere is assumed to move in the plane of the paper. Assume
the rod is weightless. A real rod obviously cannot be weightless, but it might be appropriate to
assume it is weightless if the weight of the sphere is considerably larger than the weight of the
rod. In this case, if the mass of rod can be assumed to be zero, this means that the rod also has no
translational or rotational inertia (i.e. assume mrod = Jrod = 0).

The rotational inertia of the sphere is dependent on the considered axis of rotation. For ex-
ample, the rotational inertia of a sphere about its own centroid can be calculated using (5.35) as
Jc = (2/5)mR2, where R is the radius of the sphere. However, the rotational inertia of the sphere
about the rod pivot point in Fig. 5.18 is instead:

JA = Jc +mL2 . (5.36)

Equation (5.36) is known as the parallel axis theorem.

5.6.3 Rotational springs
For a linear translational spring, the spring force Fs is:

Fs = kδ , (5.37)

where k is the spring stiffness and δ is the displacement of the spring from the zero force position
where the spring is completely unloaded. For a linear rotational spring, as shown in Fig. 5.18, the
rotational spring force (i.e. the torque applied by the spring) is similarly defined as:

Ts = kθθ , (5.38)
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where θ is the rotation of the spring from the zero torque position where the spring is completely
unloaded.

Consider again the mass spring pendulum in Fig. 5.18 subjected to gravity acting downwards
in the plane of the paper. Assume the spring is unstretched when θ = 0. At any instant in time,
i.e. at any rotation θ, the principle of angular momentum must hold. Therefore, assuming planar
motion, (5.34) for any rotation θ, yields:

Tg + Ts = JAθ̈ , (5.39)

where Ts is the clockwise torque about the pivot point provided by the rotational spring, θ̈ is
the clockwise rotational acceleration, and Tg is the clockwise torque about the pivot point due to
gravity, which can be written as:

Tg = mgL sin θ . (5.40)

Using equations (5.40) and (5.38), (5.39) can be written:

mgL sin θ + kθθ =
(
Jc +mL2

)
θ̈ , (5.41)

where Jc is the mass moment of inertia of the sphere about its centroid. Equation (5.41) is the
equation of motion for the system.

5.7 Momentum and energy
This section provides a very brief reminder of some fundamental equations of momentum and
energy. It is expected that you will be familiar with these concepts and be able to apply these
equations.

5.7.1 Conservation of momentum for impact
At impact, both energy and momentum are conserved. If an impact is elastic, conservation of
energy and momentum equations can be easily applied. However, if a significant amount energy is
dissipated at impact, i.e. transformed into heat or sound, the impact can not be considered elastic.
In this case, conservation of energy can be difficult to apply but conservation of momentum is
still straightforward. For example, assume two objects are travelling along the same axis but at
different speeds. When these objects impact each other, conservation of momentum can be written
as:

m1v
−
1 +m2v

−
2 = m1v

+
1 +m2v

+
2 , (5.42)

where m1 and m2 are the masses of the two objects, v1 and v2 are the velocities of the two masses,
and the superscripts − and + indicate velocities before and after impact, respectively. If an impact
is perfectly plastic, meaning that the two objects remain in contact after impact, (5.42) can be
written as:

m1v
−
1 +m2v

−
2 = (m1 +m2) v

+
3 ,

where v+3 is the velocity of both objects after impact.
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5.7.2 Potential and kinetic energy
The basic equation of gravitational potential energy is PE = mgh. For a linear translational spring
with a spring force described by (5.37), the potential energy can be written as:

PE =
1

2
ksδ

2 ,

where ks is again the translational spring stiffness. Similarly, for a rotational spring such as that in
Fig. 5.18 whose torque is described by (5.38), the potential energy is:

PE =
1

2
kθθ

2 .

The well-known equation for translational kinetic energy is KE = 1
2
mv2. In rotational form,

the kinetic energy is:

KE =
1

2
Jθ̇2 ,

where J is again the mass moment of inertia about a given axis and θ̇ is the rotational velocity.

5.8 Check your understanding problems
1. Determine the shear force distribution for Example 5.1 and draw the shear diagram.

2. Determine the location and magnitude of the maximum bending moment along the simple
span of the beam for Example 5.1.

3. Derive the force-deformation relation for the beam with one end continuous and a flexural
hinge at the opposite end in (5.33).

4. Determine the shear force diagram for the three hinge frame of Example 5.2. Define the
positive shear direction consistent with the selection of the x-axis orientation in the example,
but communicate the results by sketching a free body slice in the middle of the girder and
the columns with the shear forces on it.

5. Determine the normal force in the columns and in the girder for the three hinge frame of
Example 5.2.

6. Determine the support reactions for the three hinge frame of Example 5.2 and check global
equilibrium.

7. Draw the bending moment diagrams for the two structural models in Fig. 5.17.



Chapter 6

Elements of design

6.1 Introduction
Previous sections of this primer addressed elements of structural mechanics and structural analysis,
including some of the underlying mathematical methods. This chapter shifts the discussion to
structural design.

For any facility design, the structural engineer generally will work as part of a team engaged in
the design of the facility. The structural engineer’s tasks are oriented toward developing a structural
system that fits within the functional space of the facility and that provides an efficient load path
for both vertical and lateral loads. The design and analysis tasks may include the following:

• Identify a concept for a structural system that will be capable of efficiently providing a load
path. For the pedestrian bridge crossing a freeway as shown in Fig. 6.1, the concept is of an
arch spanning across a freeway, with tension hangers that support the suspended walkway.
For the building of Fig. 6.2, the concept is of a beam-column frame that resists vertical and
lateral forces.

• Estimate the loads. Once the general concept is developed, preliminary member sizes can be
estimated using experience or, where experience is lacking, by making an educated guess.
Given the preliminary member sizes, design loads associated with self-weight can be esti-
mated. Other loads due to roadway surfaces, cladding, traffic and live loads, and wind and
earthquake loads can also be estimated, either from first principles or, more likely, using
specifications from bridge and building codes. As the loads depend on the member sizes,
some iteration may be required.

• Analyze the structure. Given a structural idealization and design loads, the structure can
be analyzed to determine the structure support reactions, the member internal forces and
moments, and deflections of individual members of the entire structure.

• Develop final member/structure proportions. Now that member internal forces and moments
are determined by analysis, the members and their connections to one another can be de-
signed. This step is usually driven by considerations of safety. However, serviceability must
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Figure 6.1: Berkeley I-80 pedestrian bridge. Photo by Daniel Ramirez from
Honolulu, USA - Uploaded by Kurpfalzbilder.de. Licensed under CC BY 2.0
via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Berkeley I-
80 bridge 02.jpg#mediaviewer/File:Berkeley I-80 bridge 02.jpg.

Figure 6.2: Idealized model, loads and reactions for a building concept.
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also be considered. A trend is toward including environmental impacts, sustainability, and
resilience by design.

• Specify the design. The design intent must be conveyed via design and construction docu-
ments. The design documents contain the calculations used to demonstrate safety and ser-
viceability of the structure. The construction documents contain information on how to build
the structure, documents such as detailed specifications for materials and components, and
detailed structural drawings that convey unambiguously the required dimensions, member
sizes, member connections, and any other required details.

The process outlined above involves both elements of structural design and structural analysis.
Structural analysis (the third bullet) involves the determination of the reactions, internal actions,
and deformations/deflections of the structure under the design loads. Structural design is a much
broader endeavor, involving development of a structural concept, determination of loads, structural
analysis, proportioning of the elements and their connections, assessing structural performance and
its acceptability, and specifying the design. In this regard, structural analysis is an essential tool in
the broader endeavor of structural design.

In the SEMM graduate program we will cover many aspects of structural analysis and structural
design, including methods for determining design loads, effects of loads on behavior of structural
components and connections, and overall acceptability of structural performance. You will benefit
from having some basic knowledge of design loads and methods for design given those loads. The
following subsections provide a brief review of these subjects.

6.2 Design loads

6.2.1 Load types
Loads on structures can be either externally applied forces (e.g., self-weight, live loads, wind loads)
or imposed deformations (e.g., expansion due to temperature change or foundation settlement). In
some documents, loads are referred to by the term actions.

Building codes classify loads based on their origin. This is convenient because some loads
are determined by the structure itself, some by its occupancy, and some by the environment in
which the structure is located. The different load types have different variability, duration, and
directionality effects that may need to be considered in design. The main load types that are
considered in ASCE 7 are:

D = dead load

E = earthquake load

F = load due to fluids with well-defined pressures and maximum heights

Fa = flood load

H = load due to lateral earth pressure, ground water pressure, or pressure of bulk
materials
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L = live load

Lr = roof live load

R = rain load

S = snow load

T = self-straining load

W = wind load

Among these, the following merit additional discussion:

Dead load (D) – These are loads due to self-weight and items that are permanently
attached to a structure, such as floor finishes, HVAC (heating, ventilation, and air
conditioning). Dead loads are constant in magnitude, direction, and position in the
structure.

Live load (L) – These are loads due to occupancy and use, such as occupants, fur-
nishings, and traffic. Some live loads may be relatively long-term, such as books in
a library stack. However, live loads are usually considered to be short term loadings
that are not constant in magnitude or location. Buildings must be designed to resist
the maximum loads they are likely to be subjected to during some reference period
T, frequently taken as 50 years. Consequently, the live loads specified in codes are
usually much higher than the floor loads occurring at any point in time. Furthermore,
while it is possible to crowd many items into a small floor area, thereby producing a
large live load, it is unlikely that the same loading will occur everywhere in a structure.
Therefore, design live loads are specified for a nominal influence area (around 400 ft2),
with live load reductions for larger tributary areas. There are, of course, exceptions for
which live load does not reduce with increasing area (for example, a parking structure
or warehouse loading).

Snow load (S), Rain load (R), Wind load (W), and Earthquake Load (E) – These
are loads attributed to the environment and are generally of short duration. You’ll hear
more about earthquake loading during your time at Berkeley.

6.2.2 Load placement
The design must consider the possibility that live loads will be placed in patterns that produce the
maximum load effects. For the propped cantilever shown below, dead load must be distributed
wherever it occurs, while live load needs to be considered in different loading patterns to identify
the worst effects. The second loading pattern will produce the most positive moment (bottom
in tension) at point b, while the third loading pattern will produce the least positive moment, or
perhaps a negative moment, at b.

You may have been introduced to influence lines in a structural analysis course to help figure
out where to place loads. While useful in analysis, you do not need to study influence lines if you
have not previously seen them in your courses.
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Figure 6.3: Design must consider different loading patterns to identify worst effects that might
occur.
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Figure 6.4: Pattern loadings to determine worst negative and positive moments in a floor system.

The term pattern load describes a load being positioned in a pattern that may produce max-
imum load effects. For example, storage loads can be placed in alternate bays, with the bays
between those storage loads being unloaded so as to form corridors (b and c in Fig. 6.4). This
loading will produce maximum positive moments in the loaded bays. Alternatively, two adjacent
bays can be fully loaded with the next bays unloaded. This loading, along with alternate bays also
being loaded, will produce the maximum negative moments at supports (d, e, f, and g in Fig. 6.4).

If you are unfamiliar with these concepts, you might wish to ask your instructors in design
classes about them during the first week of classes.

6.2.3 Load paths
Roof and floor systems commonly are constructed using a series of surface structural elements
supported by larger elements capable of spanning greater distances to the supporting columns or
walls. For example, consider the framing system shown in Fig. 6.5. Floor load is applied to sur-
face elements (which could be wood planks, plywood, or concrete slab). Although these elements
are continuous in EW and NS directions, the shortest and, hence, stiffest load path is in the NS
direction, where they are supported by joists. The joists support the reactions from the surface
elements plus their own weight, and span EW to supporting beams. The beams support the joist
loads plus self-weight and span those loads NS to girders. The girders in turn span EW to sup-
porting columns, which transmit loads through axial forces to the foundations or other supporting
elements.

The structural elements need not be stacked atop one another as implied by the exploded dia-
gram in Fig. 6.5. Greater economy in construction and operations can sometimes be achieved by
framing structural members into one another such that they have the same top elevation as shown
in Fig. 6.6. Regardless, the conceptualization of the load path is the same as depicted in Fig. 6.5.
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Figure 6.5: Load path for gravity loads in a floor framing system.
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Figure 6.6: Joists framed into beams so as to have the same top elevation. (a) Wood framing
(Southern Forest Products Association); (b) Reinforced concrete framing (Idees Deco Maison).
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Figure 6.7: Comparison of reactions, shears, and moments for continuous and discontinuous
beams.

6.2.4 Tributary width and tributary area

The tributary width or tributary area concept is an approximate analysis method used for estimating
the load path in structural systems. To develop the basis for the method, consider the continuous
and discontinuous beams supporting uniformly distributed loads shown in Fig. 6.7. The continuous
beam was analyzed using the computer software RISA 2D, while the discontinuous beam was
analyzed by hand. From the results we can observe the following:

• The reactions for the continuous beam are similar to the reactions from the discontinuous
beam. The exterior reactions in the continuous beam are conservatively estimated by the
results from the discontinuous beam, while the first interior reaction is underestimated by
14%.

• The shear diagrams for the continuous and discontinuous beams are also similar.

• The moment diagrams for the two beams are markedly different.

From the preceding observations, we conclude that reactions can be reasonably approximated
by modeling the beam as a discontinuous beam. Moments, however, are strongly affected by
continuity and cannot be accurately estimated by considering the beam to be discontinuous.

We can obtain the same reactions as above using the tributary width concept. According to the
tributary width concept, the load transferred to a beam support is equal to the load acting within
the tributary width, where the tributary width is a width extending halfway to each of the adja-
cent supports (see Fig. 6.8). This method works very well where loads are uniformly distributed.
Where loads are not uniformly distributed, it is preferable to treat the beam as a discontinuous
beam and calculate the reactions using equilibrium, or, alternatively, to analyze it as a continuous
beam. Treating the beam as a discontinuous beam, for a concentrated load halfway between two
supports, half the concentrated load would be transferred to one support and half to the other. If
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Figure 6.8: Tributary widths for a continuous beam.

Figure 6.9: Tributary areas for a floor system.

the concentrated load was positioned three-quarters of the way along the support, three quarters of
the load would go to the closer support with the remainder going to the more distant support.

The concept can be expanded to tributary areas, as depicted in Fig. 6.9. For a beam along axis
2 between axes a and b, the tributary area is AT1. For the girder along axis c between axes 1 and 2,
the tributary area AT2 is the area from two beams supported by the girder. We could also add the
small area immediately above the girder, but this is too detailed for the approximate nature of the
calculation. For the interior column at the intersection of axes 3 and b, the area is AT3. A similar
approach is used for the corner column at 4d.

Example 6.1 (Tributary area and live load reduction). For the floor system shown in Fig. 6.10,
determine the design gravity loads for a typical (a) slab, (b) interior joist, (c) interior beam,
and (d) interior column supporting a single floor. The solution is shown in the figure.
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Figure 6.10: Concrete floor system.

6.3 Load and Resistance Factor Design (Strength Design)
The load and resistance factor design (LRFD) method is a common method used to design for the
ultimate limit state. There are a variety of different forms for the LRFD method. Here we adopt
the form commonly used in the United States.

6.3.1 General approach
The LRFD method can be expressed generically through the following expression:

φSn ≥ U (6.1)

in which φSn is referred to as the design strength, φ = strength reduction factor, Sn = nominal
strength, and U = factored load effect. In practice, expression (6.1) is applied to internal member
forces such as shear and moment, as in

φVn ≥ Vu (6.2)
φMn ≥Mu (6.3)
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in which Vn = nominal shear strength, Mn = nominal moment strength, Vu = shear due to factored
loads, and Mu = moment due to factored loads. Nominal strengths are strengths that are calculated
using methods specified in the building codes.

Although the LRFD method refers to an ultimate limit state approaching the failure or collapse
state, structural analysis for the limit state is usually done using assumptions of linear-elastic be-
havior. Thus, the ultimate limit state for the structural system as a whole is presumed to be reached
for the loading that first causes a member cross section to reach the design strength φSn.

Load and resistance factors for the LRFD method are established considering variability and
uncertainty in different load effects and material properties, the accuracy and variability of nominal
strengths, the brittleness of different failure modes, and the consequences of failure. For buildings
assigned to Risk Category II of ASCE 7, the intended annual probabilities of failure for load
conditions that do not include earthquake are 3 x 10-5/yr for failure that is not sudden and does
not lead to wide-spread progression of damage, 3 x 10-6/yr for failure that is either sudden or
leads to widespread progression of damage, and 7 x 10-7/yr for failure that is sudden and results in
widespread progression of damage (ASCE 7).

6.3.2 ASCE 7 factored load combinations
The factored load effect is represented by U in expression (6.1). In practice, the quantity U is the
maximum (or minimum) load effect determined through a series of load combinations. Each load
combination considers one or more load cases, whose load factors have been adjusted to achieve
approximately uniform reliability.

The main load cases are listed below, and refer to the load itself or to its effect on internal
moments and forces:

D = dead load

E = earthquake load

F = load due to fluids with well-defined pressures and maximum heights

H = load due to lateral earth pressure, ground water pressure, or pressure of bulk
materials

L = live load

Lr = roof live load

S = snow load

W = wind load

The basic load combinations consider different combinations of the load cases, as follows:

1. 1.4D

2. 1.2D + 1.6L+ 0.5(Lr or S or R)

3. 1.2D + 1.6(Lr or S or R) + (αLL or 0.5W )
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4. 1.2D + 1.0W + αLL+ 0.5(Lr or S or R)

5. 1.2D + 1.0E + αLL+ 0.2S

6. 0.9D + 1.0W

7. 0.9D + 1.0E

In combinations 3, 4, and 5, the factor αLL applied to L is equal to 1.0 for garages, for areas
occupied as places of public assembly, and for any occupancies in which L ≥ 100 psf (4.8 kPa).
Otherwise, αL = 0.5.

Special load combinations are used where fluid loads F or earth pressure loads H are present.
We need not concern ourselves with these in this primer.

In any of the load combinations, effects of one or more loads not acting, or effects of loads
acting in the opposite direction (where possible) are to be investigated. The most unfavorable
effects from both wind and earthquake loads are to be investigated, where appropriate, but they
need not be considered to act simultaneously. Additional effects of flood, atmospheric ice loads,
and self-restraining loads are not covered in this reader. See ASCE 7 for additional details.

For earthquake-resistant design, the engineer must consider the effects of earthquake direction-
ality. In general, this includes effects of earthquake loads in two principal horizontal directions
plus vertical earthquake shaking effects. Effects of over-strength on design loads must also be
considered in some special cases. These details are not covered in this primer but may be covered
in some of your classes at Berkeley.

Figure 6.11 illustrates the application of the load combinations for a planar system considering
the load cases D, L, and E. Basic load combinations 1 and 2 consider only D and combined D
and L. In this illustration, both D and L are taken at their full intensities. To obtain the worst shear
at beam mid-span, however, L should be placed on only half of the beam span. The building code
requires that this latter loading case also be considered.

Diagrams 5a and 5b in the figure illustrate ASCE 7 load combination 5; note that E must
be considered both from left to right and from right to left. Illustrations 7a and 7b in the figure
illustrate load combination 7. In a typical structure, load combination 5 results in higher axial
compression in columns while load combination 7 results in higher axial tension in columns. Both
load combinations must be considered in design. Not shown in these diagrams is the effect of
vertical earthquake loads, which must be considered in accordance with ASCE 7.

To keep your calculations efficiently organized, it is worthwhile clarifying the difference be-
tween load cases (e.g., D, L, and E) versus load combinations. Usually it is preferred to analyze
separately for each of the load cases. Then, the principle of linear superposition allows the load
combinations to be calculated as linear combinations of the load cases.

6.3.3 Resistance factors, φ
In expression (6.1), the term φSn is referred to as the design strength, which is the product of
strength reduction factor φ and nominal strength Sn. Nominal strength is determined using nom-
inal strength equations (which are covered in structural design courses). The strength reduction
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Figure 6.11: Load cases and load combinations in load and resistance factor design.
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factors have numerical values less than 1.0, and are provided (1) to allow for the possibility of
under-strength members due to variations in material strengths and dimensions, (2) to allow for
inaccuracies in the design equations, (3) to reflect the available ductility and required reliability
of the member under the load effects being considered, and (4) to reflect the importance of the
member in the structure. You may see material-specific strength reduction factors in some of your
design classes at Berkeley.

Example 6.2 (Single-bay, single-story, frame). A weightless, one-bay, one-story frame has
configuration and loading shown in Fig. 6.12. Dead load D is 3 klf (44 kN/m), live load L
is 1.8 klf (26 kN/m), and earthquake load E is 45 kips (200 kN). Use the LRFD method to
determine the required beam moment strengths at the faces of the beams (Sections 1 and 2).

Figure 6.12: Single-bay, single-story, frame.

Solution: The load cases and load combinations are shown in Fig. 6.11. The structure
is modeled using flexural stiffness equal to 0.3EIg for beams and columns and analyzed for
the load cases using computer software for structural analysis. The results of the load cases
are then combined using the load combinations. Calculated moments at sections 1 and 2 are
tabulated below.
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Table 6.1: Load cases and combinations.
Moments, k-ft (kN-m)

Load case Section 1 Section 2
D -51.6 (-70.2) -51.6 (-70.2)
L -31.0 (-42.1) -31.0 (-42.1)
E 203 (275) -203 (-275)
Load Combination
1.4D -72.2 (-98.2) -72.2 (-98.2)
1.2D + 1.6L -111 (-152) -111 (-152)
1.2D + 0.5L+ E 125 (170) -280 (-381)
1.2D + 0.5L− E -280 (-381) 125 (170)
0.9D + E 156 (212) -249 (-339)
0.9D − E -249 (-339) 156 (212)
Minimum -280 (-381) -280 (-381)
Maximum 156 (212) 156 (212)

Example 6.3 (Required nominal moment strengths). Determine the required nominal moment
strengths of the beam at section 1 considering the loading of Example 6.2. Assume the strength
reduction factor is φ = 0.9 for beam moment strength.

Solution: From Example 6.2, the required moment strengths are Mu = -280 k-ft and
+156 k-ft. Thus, the required nominal moment strengths are Mn = Mu/φ = -311 k-ft and
+173 k-ft. The beams would need to be designed to provide at least these nominal strengths.



Chapter 7

Elements of structural materials

7.1 Introduction
In the primer we will not cover structural materials. The introductory graduate course treating
structural materials will focus on development, behavior, durability design, and failure charac-
teristics of high performance civil engineering materials such as High Performance Concrete (in-
cluding High Performance fiber reinforced cement-based composites and Ultra-high performance
fiber reinforced composites), High Performance Steel (ductile/brittle transitions, fatigue behavior,
fracture and forensic analysis) and Polymeric Materials that are being utilized both for new and
for retrofitted structures. The introductory course dealing primarily with structural materials will
begin with a review of the properties, performance, and fracture characteristics of conventional
civil engineering materials in the early parts of the semester in order to bring all students up to an
equal level in terms of background knowledge.
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