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Abstract

The micro-sphere modeling framework provides a popular means by which
one-dimensional mechanical models can easily and quickly be generalized into
three-dimensional stress-strain models. The essential notion of the framework,
similar to homogenization theory, is that one allows the microstructural kine-
matic fields to relax subject to a constraint connected to a macroscopic de-
formation measure. In its standard presentation, the micro-sphere modeling
framework is strictly applicable to elastic materials. Presentations considering
inelastic phenomena invariably, and inconsistently, assume an affine relation
between inelastic macroscopic and microscopic phenomena. In this work we
present a methodology by which one can lift this modeling restriction. In par-
ticular, we show how one can construct and apply a homogenized Biot theory to
generate fully-relaxed variationally-consistent macroscopic models for inelastic
materials within the context of the micro-sphere model. The primary applica-
tion example will be finite deformation viscoelasticity.

Keywords: micro-sphere, finite deformation viscoelasticity

1. Introduction

The development of material models of polymeric materials, elastomers in
particular, generally follows either a phenomenological track or a micromechani-
cal one. Common successful phenomenological models include, for example, the
two-parameter model of Mooney (1940), Rivlin (1948), and Rivlin and Saun-
ders (1951), the principal stretch model of Ogden (1972, 1984), or the multi-
parameter model of Yeoh (1993). While successful, these models lack a direct
connection to the microstructural origins of the mechanical response. Models
that attempt to address this issue include the famous 3-, 4-, and 8-chain models

∗Corresponding author.
Email addresses: s_g@berkeley.edu (Sanjay Govindjee), zollermi@berkeley.edu

(Miklos J. Zoller), klaus.hackl@rub.de (Klaus Hackl)

Technical Report No. UCB/SEMM-2018/04 April 11, 2018



proposed, respectively, by James and Guth (1943), Flory and Rehner (1943),
and Arruda and Boyce (1993). This category of models also includes the full
network models of Treloar and Riding (1979) and Wu and van der Giessen
(1993); see also Puso (1994) for a review of these models.

Underlying these latter micromechanical models is a statistical mechanics
model for the force-extension relation for a single polymer chain and an imagi-
native idealization of the topology of the cross-linked polymer network. These
models also employ an affine kinematic assumption, the exception being the
4-chain model of Flory and Rehner (1943) which allows the central tetrahedral
junction to take up an energetically relaxed position. The remainder of the
models, the affine ones, are essentially homogenization models of a particular
network arrangement employing a Taylor (1938)-like kinematic condition (see
also Zienkiewicz et al., 2014, Chap. 7) – all the network junctions move affinely
with respect to the macroscopic deformation (gradient).

Similar to the full network models is the micro-plane model of Bažant and
Gambarova (1984) that was developed for the modeling of the fracture of brit-
tle materials; see also Bažant and Oh (1985) and Carol et al. (2004) among
other papers from the same group. The micro-plane model starts with a one-
dimensional model (inelastic) and then proposes a virtual work equivalence be-
tween macroscopic and microscopic virtual work on a spherical representation of
the material microstructure. To close the model, an affine kinematic assumption
is made between the macroscopic deformation measure and the microstructural
deformation measures. The framework of the micro-plane models is one that is
clearly connected to the notions of homogenization in the spirit of Hill (1972)
and others, but omitting gradient fields due to the point nature of the represen-
tative volume element in the micro-plane model.

The micro-sphere model by Miehe et al. (2004) improved on these earlier
works by recognizing that the full network models were in fact like homogeniza-
tion models, and it was not necessary to impose an affine assumption on the
microstructural kinematics. Rather it was possible to allow the stretch in each
direction on the micro-sphere to energetically relax, subject to a macroscopic
constraint that keeps the p-root average of the local micro-sphere stretches equal
to the p-root average of the affine stretches over the micro-sphere. Strikingly,
Miehe et al. (2004) were able to show that this minimization problem had a
closed-form solution for single chain models with arbitrary complexity. The
micro-sphere modeling framework has been widely used in many contexts. In
particular, researchers have extended its use to the case where the underlying
chain model is no longer elastic; see e.g. Miehe and Göktepe (2005); Dal and
Kaliske (2009); Mistry and Govindjee (2014); Guilié et al. (2015) among others.
Unfortunately in these extensions, researchers have had to abandon the fully
variational setting developed by Miehe et al. (2004) when treating the inelastic
phenomena – the macroscopic and microscopic inelastic evolutions are always
connected affinely. It is the goal of this paper to show how to lift this restriction
and arrive at a model which includes micromechanical evolution that generates
variationally relaxed macroscopic evolution of the inelastic phenomena. To keep
the presentation compact, we will restrict ourselves to the case of viscoelasticity.
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Similar to the viscoelastic extension by Miehe and Göktepe (2005) we will
utilize the dissipation potential concept of Biot (1955). But here we will present
a construction that generates a macroscopic dissipation potential from micro-
scopic dissipation potentials at the “chain-level”. The methodology employed
will be in direct analogy to how macroscopic free energies are constructed from
microscopic ones. Thus this work aims to generalize the non-affine homogeniza-
tion scheme for the determination of the macroscopic free energy in the presence
of internal evolutionary phenomena. Viscoelastic behavior will be incorporated
through an exploitation of the variational framework of Biot (1955) and an ad-
ditional relaxation process. Ultimately, this formulation permits the modeling
of a wide variety of inelastic polymer behaviors. Following the micro-sphere
developments of Tkachuk and Linder (2012) and the micro-plane developments,
by for example, Carol et al. (2004), we will additionally utilize tensorial con-
straints for the micro-sphere relaxation. In the examples, we will do this using
the Hencky strain measure as well as the deformation gradient.

2. Preliminaries

We consider deformable continuum bodies with a deformation χ that maps
reference points X to current locations x = χ(X). The deformation gradient
will be denoted F = ∂x/∂X, the right Cauchy-Green deformation tensor C =
F TF = U2, where U is the right stretch tensor computed from the polar
decomposition of F ; see e.g. Ogden (1984) or Gurtin (1981). Additionally, since
C is symmetric and positive definite, by the spectral decomposition theorem:

C = U2 =

3∑
i=1

λ2iN i ⊗N i ,

and

U =

3∑
i=1

λiN i ⊗N i ,

where λi and N i are the principal stretches and directions, respectively. The
Hencky strain (see Hencky, 1928) can then be expressed as

ln (U) =

3∑
i=1

ln (λi)N i ⊗N i .

We further define the volume preserving parts of F and C, where J = det(F ),
by

F̄ = J−1/3F ,

C̄ = F̄
T
F̄ = J−2/3C .

For one of the viscoelastic models developed below we will additionally adopt
the Sidoroff (1974) multiplicative decomposition of the deformation gradient
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into elastic and inelastic parts:

F = FEFV ;

see also Le Tallec and Rahier (1994); Reese and Govindjee (1998).

3. Fully variational microsphere for viscoelastic materials

This section will focus on generalizing the minimization technique of the
micro-sphere model with tensorial constraints. The core of the model is a min-
imization on micro-scale kinematic variables subject to a constraint enforcing
that the continuum deformation is equal to the directional integral average of
the microscopic deformation. Additionally, Biot’s principle will be utilized to
determine the evolution law of the system at the continuum level with the use of
a dissipation potential. This approach allows for extension to other evolutionary
microstructural phenomena but this will not be the topic of this work.

The micro-sphere model proposed by Miehe et al. (2004) and Miehe and
Göktepe (2005) postulates that the topology of the polymer network can be
characterized by a micro-sphere. The micro-sphere is composed of a distribution
of polymer chains that all connect to the center of the micro-sphere and whose
other ends are distributed on the surface of the sphere, S. More generally one
can think of tubes of material connecting the center to the surface of the sphere.
To each point on the sphere we will define the outward unit normal to be n,
this gives the orientation of the individual chains/tubes of material. The 3-, 4-,
8-chain, and full network models are included in this framework by assuming
either a distribution function composed of 3-, 4-, or 8-Dirac masses or as a
uniform (1/|S| ≡ 1/4π) distribution.

To each point on the sphere we postulate a micro-scale tensorial deforma-
tion measure that depends on micro-scale kinematic fields on the surface of the
sphere. Example micro-scale kinematic fields that can be used to build such ten-
sor fields would include, for example, the local stretch (Miehe et al., 2004) and
the local transverse tube strain for each orientation (Edwards and Vilgis, 1988).
The micro-scale kinematic fields need not be scalar (Tkachuk and Linder, 2012).
To be more concrete, we assume that for each orientation n there is an associ-
ated tensorial micro-scale strain measure Em that depends on these micro-scale
kinematic fields. The subscript m will be used to denote micro-scale variables;
corresponding macroscopic quantities will not have the subscript. Furthermore,
we will denote by αi the elastic micro-scale fields on the sphere. To account
for inelastic processes, we will also define viscous strain measure EV

m to model
time dependent relaxation phenomena. EV

m will depend on a different set of
micro-scale fields βj over the sphere.

3.1. The elastic case

As a specialization, and to fix ideas in the simplest possible case, we will
briefly review the elastic micro-sphere case in the setting just described. For
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concreteness let us define the micro-scale “right-stretch tensor” as

Um(λ, ν) = λn⊗ n+ ν(1− n⊗ n) ,

where λ and ν are the local stretch and tube contraction of the material oriented
at n. This is the primary kinematic assumption on the local deformation. We
further introduce the micro-scale Hencky strain as

lnUm =
1

3
ln j1 + 3 ln ξ

(
n⊗ n− 1

3
1

)
,

where the micro-jacobian j = λν2 and the micro-deviatoric stretch ξ = 3
√
λ/ν.

In the general notation lnUm corresponds to Em, and ln j and ln ξ correspond
to α1 and α2.

The second ingredient of the micro-sphere model is a micro-scale description
of the free energy of the material oriented in the direction n in terms of the
micro-scale kinematic fields. In the present case, this could be an additively
split function

ψm(ln j, ln ξ) = ψvol
m (ln j) + ψdev

m (ln ξ) ,

though other choices are certainly possible. Note, however, that the choices are
not fully arbitrary. In particular, Carol et al. (2004) have shown for the micro-
plane model that certain choices lead to restrictions on material response that
do not comport with usual expectations – such as materials with only negative
Poisson’s ratios or fixed Poisson’s ratios (in the small strain limit). These issues
also hold true for the micro-sphere model, but the choice given above does not
suffer from these defects.

For the present choices, the macroscopic free energy density is then postu-
lated to be given by the energetic relaxation

Ψ(lnU) = inf
ln j,ln ξ

{
1

|S|

∫
S

ψm(ln j, ln ξ) dS

}
, (1)

subject to the kinematic constraint

lnU =
1

|S|

∫
S

lnUm dS . (2)

The minimization in (1) subject to (2) can be carried out to generate an elastic
stress-strain model, where the Lagrange multiplier used to enforce the constraint
is the conjugate stress to lnU ; we leave out the details to avoid duplication later.
In general the resulting model requires quadrature over the sphere – a point
that we will also discuss later. Depending on the choices for the micro-energy
densities explicit or implicit models may be obtained. Written in this way, the
micro-sphere model is clearly seen to be a type of homogenization model, albeit
one that can be computed without having to consider gradient constraints as
appear in typical representative volume element homogenization problems.
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3.2. The viscoelastic case: General structure

We now return to the general viscoelastic case where in addition to Em

and αi (i = 1, . . . , nα), we also have micro-scale viscous fields EV
m and βj (j =

1, . . . , nβ). As with the elastic case, to each micro-scale tensor field we will
have a corresponding macro-scale tensor which we will require to be equal to its
directional/surface average:

E =
1

|S|

∫
S

Em (αi) dS , (3)

EV =
1

|S|

∫
S

EV
m (βj) dS . (4)

With the constraints introduced, the macroscopic free energy is constructed
through the relaxation of the micro-scale fields αi and βj in terms of an energy
function ψm defined for each spatial direction over the micro-sphere,

Ψ = inf
αi,βj

{
1

|S|

∫
S

ψm (αi, βj) dS

}
(5)

subject to (3) and (4).
We solve this optimization problem using two Lagrange multipliers τ and

τV to enforce these constraints via the Lagrangian

L
(
αi, βj , τ , τ

V
)

=
1

|S|

∫
S

ψm (αi, βj) dS

+ τ :

[
E − 1

|S|

∫
S

Em (αi) dS

]
+ τV :

[
EV − 1

|S|

∫
S

EV
m (βj) dS

]
.

The stationary conditions for this Lagrangian yield:

δαiL =
1

|S|

∫
S

(
∂ψm

∂αi
− τ :

∂Em

∂αi

)
δαi dS = 0 , (6)

δβj
L =

1

|S|

∫
S

(
∂ψm

∂βj
− τV :

∂EV
m

∂βj

)
δβj dS = 0 , (7)

δτL = δτ :

[
E − 1

|S|

∫
S

Em (αi) dS

]
= 0 , (8)

δτVL = δτV :

[
EV − 1

|S|

∫
S

EV
m (βj) dS

]
= 0 . (9)

Thus, the Euler-Lagrange equations are:(
∂ψm

∂αi
− τ :

∂Em

∂αi

)
= 0 , (10)(

∂ψm

∂βj
− τV :

∂EV
m

∂βj

)
= 0 , (11)
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along with two macroscopic residual equations enforcing the constraints:[
E − 1

|S|

∫
S

Em (αi) dS

]
= 0 , (12)[

EV − 1

|S|

∫
S

EV
m (βj) dS

]
= 0 . (13)

In general, the free energy ψm couples the variables αi and βj in a nonlinear
way, requiring equations (10) and (11) be solved via an iterative method. When
done so, the fields αi and βj are given in terms of the macro-scale Lagrange
multipliers τ and τV, which are straightforwardly shown to be the macroscopic
stresses conjugate to E and EV; viz. τ = ∂Ψ/∂E and τV = ∂Ψ/∂EV (see
Appendix A). When the solution fields for αi and βj are inserted into (12)
and (13), one obtains the micro-sphere’s macroscopic stress-strain model (strain
in terms of stress). Missing, however, to this point is a rational means for
determining the evolution of the macroscopic viscous quantities.

To proceed further we postulate the existence of a micro-scale dissipation
potential ∆m(βj , β̇j) in the sense of Biot (1955) such that the inelastic micro-
field evolution is governed by the minimization problem:

inf
β̇j

[
ψ̇m + ∆m

]
. (14)

In this framework, satisfaction of second law requirements is relatively easy.
For example, all functions ∆m that are non-negative homogenous of degree n in
the second argument will work. Note that for economy of presentation, we will
assume henceforth that ∆m is only a function of β̇j .

The main postulate of our work is that a macroscopic dissipation potential
∆ can be constructed from an additional relaxation process on the microscopic
dissipation potential ∆m in terms of the rate of the viscous internal variables
β̇j :

∆ = inf
β̇j

{
1

|S|

∫
S

∆m

(
β̇j

)
dS

}
, (15)

subject to the constraint:

Ė
V

=
1

|S|

∫
S

˙
EV

m (βj) dS . (16)

And further that the macroscopic evolution then satisfies the macroscopic ver-
sion of (14):

inf
˙E

V

[
Ψ̇ + ∆

]
. (17)

To determine the macroscopic dissipation potential, we can employ a third
Lagrange multiplier τ d to enforce equation (16):

L
(
β̇j , τ

d
)

=
1

|S|

∫
S

∆m

(
β̇j

)
dS

+ τ d :

[
Ė

V − 1

|S|

∫
S

˙
EV

m (βj) dS

]
.
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The resulting variational equations yield:

δβ̇j
L =

1

|S|

∫
S

∂∆m

∂β̇j
− τ d :

∂
˙

EV(βj)

∂β̇j

 δβ̇j dS = 0 , (18)

δτ dL = δτ d :

[
Ė

V − 1

|S|

∫
S

˙
EV

m (βj) dS

]
= 0 . (19)

Satisfaction of equation (18) requires∂∆m

∂β̇j
− τ d :

∂
˙

EV(βj)

∂β̇j

 = 0 , (20)

whose solution furnishes the evolution equation for the viscous micro-fields with
the macroscopic Lagrange multiplier τ d supplying the driving force. When
this solution is substituted into (16), one arrives at the macroscopic evolution

equation for Ė
V

.
Examining the governing equations up to this point we see that we have

three macroscopic residual equations (3), (4), and (16); further, there are three
microscopic residual equations (10), (11), and (20) that allow one to evaluate
the macroscopic residuals in terms of the Lagrange mulitpliers. However, macro-
scopically there are four tensors to be determined by the constitutive framework
(EV, τ , τV, τ d), assuming that E is given, and thus one additional macroscopic
equation is required. The last equation is furnished by the macroscopic form of
Biot’s principle (17), leading to:

∂Ψ

∂EV
+

∂∆

∂Ė
V

= 0 ⇒ τV + τ d = 0

and the closure of the system of equations. Note that in this setting (16) together
with (20) provide the evolution equations for the viscous (internal) variables, and
Biot’s principle in this setting provides the inter-relation between the Lagrange
multipliers. It should also be further noted that if quadratic potentials are
chosen, and E and EV are taken as the total and viscous infinitesimal strain
tensors, respectively, then closed form solutions are easily found and the theory
of linear viscoelasticity is exactly recovered; see Appendix B.

3.3. Time incremental form

Due to the complexity of the system of constitutive equations, they, like most
inelastic models, are often evaluated in a time incremental fashion. The time
incremental equations can be derived as shown above where time derivatives
are replaced by difference approximations. This methodology follows closely
the ideas pioneered by Ortiz and Stainier (1999); Ortiz et al. (2000); Carstensen
et al. (2002), and analyzed by Mielke (2004). In what follows, we will use
subscripts n and n + 1 to denote quantities evaluated at times tn and tn+1 =
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tn +h, where h > 0 denotes the time step. In this setting, all quantities at time
tn are assumed known, as is En+1.

The time incremental form of the equations starts by discretizing the ex-
pression for the macroscopic dissipation potential (15) as:

∆

(
EV
n+1 −E

V
n

h

)
= inf
βj,n+1

{
1

|S|

∫
S

∆m

(
βj,n+1 − βj,n

h

)
dS ,

}
subject to the time incremental constraint

EV
n+1 −E

V
n

h
=

1

|S|

∫
S

EV
m(βj,n+1)−EV

m(βj,n)

h
dS . (21)

Constructing the Lagrangian for this problem, one arrives at the time incremen-
tal Euler-Lagrange equations

D∆

(
βj,n+1 − βj,n

h

)
− τ d :

∂EV
m,n+1

∂βj,n+1
= 0 ,

which furnishes the time incremental evolution equation for the micro-scale
inelastic fields. Note the operator D indicates differentiation with respect to
the function’s entire argument.

As with the time continuous case, we employ the macroscopic version of
Biot’s principle to close the system of equations – this time in its time incre-
mental form. Thus we require

inf
EV

n+1

[
Ψn+1

(
En+1,E

V
n+1

)
−Ψn

(
En,E

V
n

)
+ h ·∆

(
EV
n+1,E

V
n

)]
. (22)

As before this relation informs us that τV = −τ d.

4. Nonlinear viscoelasticity with Hencky measures

To illustrate the application of the general theory, we now consider its ap-
plication to the case of a material that can be modeled using Hencky strain
measures. To begin, we postulate at the microstructural level that the chain
deformation is described via a tensor, Um = λn⊗n+ν (1− n⊗ n), where λ is
the chain stretch, ν is the stretch tranverse to the chain, and n is the unit chain
orientation vector. As is common in elastomer models, we wish to decouple
these variables into volumetric and isochoric components. This is achieved by
first defining a micro-jacobian j = λν2 and a purely deviatoric kinematic vari-
able ξ = 3

√
λ/ν. From here we can define the isochoric part of the micro-strain

tensor:
Ūm = j−1/3Um = ξ2n⊗ n+ ξ−1(1− n⊗ n) ,

or equivalently

Um = j1/3Ūm = j1/3ξ2n⊗ n+ j1/3ξ−1(1− n⊗ n) .
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The strain measure we will use will be the Hencky (logarithmic) strain:

lnUm =
1

3
ln j1 + 3 ln ξD(n) ,

where D(n) = n ⊗ n − 1
31. The viscous micro-strain will be assumed to be

purely deviatoric and thus to have the following form:

lnUV
m =

n∑
i=1

3 ln ξVi D(n) . (23)

The factor of 3 in front of the ln ξVi terms is used for convenience. The param-
eter n in the summation above denotes how many viscous relaxation terms are
needed to accurately represent a particular material’s mechanical response. For
simplicity of presentation we will assume n = 1 and drop the summation.

For the micro-scale free energy we will assume an additive structure with
equilibrium and non-equilibrium terms and one that also splits deviatoric from
volumetric contributions:

ψm(ln j, ln ξ, ln ξVi ) = ψvol,eq
m (ln j) + ψdev,eq

m (ln ξ) + ψdev,neq
m (ln ξ, ln ξV) .

Setting up the free energy Lagrangian with Lagrange multipliers τ and τV, we
have:

L
(
ln j, ln ξ, ln ξV, τ , τV

)
=

1

|S|

∫
S

ψm

(
ln j, ln ξ, ln ξV

)
dS

+ τ :

[
lnU − 1

|S|

∫
S

lnUmdS

]
+ τV :

[
lnUV − 1

|S|

∫
S

lnUV
mdS

]
.

Here lnU represents the total macroscopic Hencky strain and lnUV represents
the macroscopic viscous Hencky strain. The resulting Euler-Lagrange equations
are:

∂ψvol,eq
m

∂ ln j
− τ :

1

3
1 = 0 , (24)

∂ψdev,eq
m

∂ ln ξ
+
∂ψdev,neq

m

∂ ln ξ
− τ : 3D(n) = 0 , (25)

∂ψdev,neq
m

∂ ln ξV
− τV : 3D(n) = 0 , (26)

along with the two constraint equations:

lnU − 1

|S|

∫
S

ln j
1

3
1 + 3 ln ξD(n) dS = 0 , (27)

lnUV − 1

|S|

∫
S

3 ln ξV D(n) dS = 0 . (28)

The conjugate stresses, the Lagrange multipliers, are the rotated Kirchhoff
stresses; see Hoger (1987).
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It is interesting to observe that (24) implies that ln j is a constant over the
micro-sphere. Thus ln j behaves affinely, j = J . This result provides justifi-
cation for the arbitrary assumption in Miehe et al. (2004) that the energetic
relaxation for the micro-sphere construction is only performed on the deviatoric
part of the motion. The two other micro-fields ln ξ and ln ξV are coupled via
(25) and (26). If we denote the solution of the equations for the micro-fields
with a superposed ∗, then we see that they are a function of τ and τV and
orientation n:

ln ξ∗(τ , τV,n) and ln ξV ∗(τ , τV,n) and ln j∗(τ ) ,

which implies that (27) and (28) become at time tn+1

lnUn+1 −
1

|S|

∫
S

ln j∗(τ )
1

3
1 + 3 ln ξ∗(τ , τV,n)D(n) dS = 0 , (29)

lnUV
n+1 −

1

|S|

∫
S

3 ln ξV ∗(τ , τV,n)D(n) dS = 0 . (30)

To complete the system of equations, we can apply the developments of
Sec. 3.3 to the present case. Doing so results in the time incremental relation
for the inelastic micro-scale field as

D∆m

(
ln ξVn+1 − ln ξVn

h

)
+ 3τV : D(n) = 0 , (31)

where we have used the macroscopic version of Biot’s principle (17) to eliminate
the third Lagrange multiplier. If we solve (31) for the inelastic micro-fields and
then plug back into the time incremental constraint (21), we find

lnUV
n+1 = lnUV

n +
h

|S|

∫
S

[D∆m]−1
(
−3τV : D(n)

)
dS , (32)

as the incremental update formula for the macroscopic inelastic Hencky strains.
Equations (29), (30), and (32) constitute the macroscopic constitutive equa-
tions for the model. They represent 3 tensor equations in the three unknowns
lnUV

n+1, the inelastic strains, τ , the total stress, and τV the viscous stress. (For
convenience we have omitted the time step subscript for the stress tensors).

4.1. Numerical Algorithm

The solution to (29), (30), and (32) requires two issues to be addressed when
used in the conventional strain driven setting. The first is that the equations
are implicit in terms of the stress and thus have to be inverted. This is easily
done using a Newton-Raphson iteration. The other numerical issue that arises
is that one needs to evaluate integrals on the sphere to compute the terms in
the governing equations. This can be achieved by a quadrature, whereby

1

|S|

∫
S

f(x) dS ≈
nq∑
i=1

f(xi)wi ,
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where the xi are the quadrature points, wi are the weights, and nq are the num-
ber of quadrature points. Recent studies have shown problems with the accu-
racy and reliability of common numerical integration methods over the sphere.
Verron (2015), for example, compares various numerical integration methods
for evaluating constitutive equations over the micro-sphere and has concluded
that the number of quadrature points for a given scheme is very important in
yielding accurate results. However, further work done by Itskov (2016) shows
that numerical integration is still a reliable and accurate tool for full network
models. A majority of the disagreement seems to be in the smoothness of the
functions used. We took this into account and have studied the accuracy of
integrating micro-free energies on the micro-sphere for a variety of points and
different integration schemes. We omit the details here and simply note that
the symmetric 21 point integration rule formulated by Bažant and Oh (1986)
provided reasonable accuracy for the moderate levels of finite deformation show
below. Good results can also be found with the more expensive rules of Sloan
and Womersley (2004), Fliege and Maier (1999), and Freund et al. (2011).

4.2. Comparison to data: Tire derived materials

As an application of the model, we consider the experiments on tire-derived
materials (TDMs) from Montella et al. (2016), who showed that Hencky based
continuum models were appropriate for such materials. TDMs are made by cold
forging a mix of styrene-butadiene rubber fibers from recycled vehicle tires and
grains with a polyurethane binder. This results in a material composed of about
90 percent styrene-butadiene fibers and about 10 percent grains with varying
densities. In addition, TDMs are compressible, so the original micro-sphere
model for nearly incompressible materials will not suffice here. This utilizes
the ln j component of our micro-strain model unlike common rubber elasticity
models which inherently assume incompressibility.

We choose to compare our model to a TDM with a density of 500 kg/m3, ex-
cited in uniaxial compression and simple shear at a loading frequency of 0.1 Hz.
For the uniaxial compression test, there was a static pre-strain of 10% followed
by a superimposed sinusoidal compression varying in amplitude in the range of
1% to 20%. The second test was a dynamic lap-shear test in which the sample
specimen was loaded up to 100% shear strain. The reader is referred to Montella
et al. (2016) for more details.

Since the authors used a modified version of the exponentiated Hencky strain
energy, Neff et al. (2015), we choose to use microscopic potentials with a similar
structure, given by (33)–(36). The exponentiated energies are important to
achieve proper energy growth at large deformations. Note that the choice of
these functions is somewhat arbitrary and any one-dimensional micromechanical
model can be employed within the proposed framework. The functions chosen
are only intended for illustration purposes. A set of non-optimized material
parameters are given in Table 4.2.
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ψvol,eq
m =

Ev
2

(ln j)2 (33)

ψdev,eq
m =

Ed1
2

(ln ξ)2 +
Ed2
4

(ln ξ)4 +
Ed3
2κ1

exp
(
κ1(ln ξ)2

)
(34)

ψdev,neq
m =

µ1

2

(
ln ξ − ln ξV

)2
+
µ2

4

(
ln ξ − ln ξV

)4
+

µ3

2κ2
exp

(
κ2
(
ln ξ − ln ξV

)2)
(35)

∆m =
η1
2

(
ln ˙ξV

)2
+
η2
4

(
ln ˙ξV

)4
(36)

Ev Ed1 Ed2 Ed3 κ1 µ1 µ2 µ3 κ2
(MPa) (MPa) (MPa) (MPa) (-) (MPa) (MPa) (MPa) (-)

0.5 0.215 0.2 0.16 1.18 0.2 0.4 0.55 1.0

η1 η2
(MPa·s) (MPa·s)

0.115 3.25

Table 1: Material parameters for Figures 1 and 2.

Figures 1 and 2 show the results for our model compared to the data for
the tire-derived material. The plots of the total stretch λ = j1/3ξ2 and the
ratio of the total stretch to λV = (ξV)2 illustrate that once the macroscopic ma-
terial response has been computed, the micro-fields are available via function
evaluation/post-processing to allow investigation of local effects. For these two
loading cases, our model performs reasonably well in simulating the experimen-
tal data. We are able to accurately obtain the stress for the largest deformations
while still predicting the overall response of the stress-strain curve. However,
we do note that the compression stress/strain simulation is not as accurate as in
the shear case due to the slightly anisotropic microstructure of the tire derived
material. The overall response of the model is, of course, also tightly connected
to the quality of the one-dimensional micro-scale potentials used, and we have
not attempted to optimize these in this work, as our main focus is on the overall
modeling framework.

5. Nonlinear viscoelasticity with a multiplicative split

In this section we illustrate the use of our framework to extend the maxi-
mal advance path constraint scheme presented in Tkachuk and Linder (2012)
to include viscous relaxation phenomena. The “strain measure” used here will
be the deformation gradient F . In the spirit of the multiplicative decompo-
sition F = FEFV (Sidoroff, 1974), we assume micro-scale elastic and viscous

13



Figure 1: Data from Montella et al. (2016). The left sphere represents the total stretch along
various orientations for the micro-sphere, while the right sphere represents the non-equilibirum
stretch.

deformation gradients of the form:

FE
m = α · n⊗ nV , (37)

FV
m = nV ⊗ n0 , (38)

Fm = FE
mF

V
m = n⊗ n0 . (39)

Here, the total micro-strain is the outer product of the deformed orientation
vector n and the original directional vector n0 over the surface of the sphere; i.e.
n0 maps to n. We extend Tkachuk and Linder (2012) using a similar kinematic
assumption for the viscous micro-scale deformation gradient and introduce a new
variable nV accounting for the mapping of n0 from the reference to intermediate
configuration; α = 1/‖nV‖ to ensure that we recover Fm = n ⊗ n0 when
multiplying FE

m and FV
m together.

The requisite constraint equations for the relaxations are now given in terms
of the vectorial micro-fields n and nV:

1

3
F =

1

|S|

∫
S

Fm(n) dS , (40)

1

3
FV =

1

|S|

∫
S

FV
m(nV) dS . (41)

(The factor of 1/3 as noted in Tkachuk and Linder (2012) is due to the fact that
for no deformation 1

|S|
∫
S
n0 ⊗ n0 dS = 1

31.) Continuing with the framework,

we again assume a decoupled micro free energy into equilibrium ψeq
m and non-

equilibrium ψneq
m components, where ψeq

m will depend on the norm of n and ψneq
m

14
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Figure 2: Data from Montella et al. (2016). The left sphere represents the total stretch along
various orientations for the micro-sphere, while the right sphere represents the non-equilibrium
stretch.

will depend on ||n−nV||. Additionally, the microscopic dissipation potential is

defined in terms of || ˙
nV||:

ψm(n,nV) = ψeq
m (||n||) + ψneq

m (||n− nV||) ,

∆m(
˙
nV) = ∆m(|| ˙

nV||) .

The remainder of the model details follow in exactly the same fashion as above.
Perhaps the only point of note is that the conjugate stresses that appear in this
formulation are 1st Piola-Kirchhoff stress (and they appear as one-third times
the Lagrange multipliers).

5.1. Comparison to data: Tire derived materials

As with the Hencky example we will apply this model to the TDM data
of Montella et al. (2016). The potential functions chosen, as before, are for
illustrative purposes:

ψeq
m =

E1

2
exp

(
||n||2

)
+
E2

2
||n||2 +K (log ||n||)2 ,

ψneq
m =

µ

2
||n− nV||2 ,

∆m =
η1
2
|| ˙
nV||2 +

η2
4
|| ˙
nV||4 .
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The (non-optimized) material parameter used are shown in Table 2.
The model is seen to be able to model large deformations and with large

amounts of dissipation. We can see that for roughly the same accuracy as the
Hencky model, one needs half as many material parameters with our viscoelastic
extension of the maximal advance path constraint structure from Tkachuk and
Linder (2012). This highlights the importance of good micro-scale models when
using the micro-sphere framework to model materials.

E1 E2 K µ η1 η2
(MPa) (MPa) (MPa) (MPa) (MPa·s) (MPa·s)
0.10 0.10 1.254 10.0 0.10 0.15

Table 2: Material parameters for Figures 3 and 4.
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Figure 3: Data from Montella et al. (2016). The left sphere colorbar shows the norm of the
elastic vector n, while the right sphere colorbar shows the norm of the difference n− nV.
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elastic vector n, while the right sphere colorbar shows the norm of the difference n− nV.

6. Conclusion

The micro-sphere framework is a popular framework for extending one-
dimensional elastic models into three dimensions via energetic relaxation of
micro-scale energies subject to macro-micro relational constraints. Outside of
the elastic case, efforts to date have always relied upon an affine connection be-
tween macroscopic and microscopic inelasticity. In this work we have presented
a structure for dispensing with this affine assumption.

The construction requires that the micro-scale material response be gov-
erned by one-dimensional models that admit a Biot variational representation.
In particular we have shown via examples that this applies to linear and non-
linear viscoelasticity (at both finite and small deformations). We also note that
it applies to many models of plasticity, strain crystallization, and other trans-
formation phenomena.

The key ingredient for removing the affine connection, is the assumption
that there exists a macroscopic dissipation potential that can be derived from a
variational relaxation of the average of the micro-scale dissipation potential over
the micro-sphere. The relaxation is performed subject to macro-micro kinematic
constraints. The resulting structure provides a macroscopic three-dimensional
evolutionary model for inelastic behavior that is variationally fully consistent
with the microscopic material model that one assumes.

While we have applied our relaxation scheme to the micro-sphere, we also
note that the idea of constructing macroscopic dissipation potentials from micro-
scopic dissipation potentials applies more generally. In particular, it naturally
extends to inelastic composite materials, where one, however, must also deal
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with the issue gradient constraints should one desire to do better than Voigt
averaging.
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Appendix A. Lagrange multipliers and conjugate stresses

The conjugate stresses to the macroscopic variables are straightforwardly
show to be equal to the Lagrange multipliers in our relaxation problems. Con-
sider a micro-scale free energy in terms of a two sets of micro-fields αi (elastic)
and βj (viscous), subject to averaging constraints, such that the governing La-
grangian is given by

L(αi, βj , τ , τ
V) =

1

|S|

∫
S

Ψm(αi, βj) dS

+ τ :

[
E − 1

|S|

∫
S

Em(αi) dS

]
+ τV :

[
E − 1

|S|

∫
S

EV
m(βj) dS

]
The corresponding stationary conditions yield:

δαiL =
1

|S|

∫
S

(
∂Ψm

∂αi
− τ :

∂Em

∂αi

)
δαidS = 0 (A.1)

δβj
L =

1

|S|

∫
S

(
∂Ψm

∂βj
− τV :

∂EV
m

∂βj

)
δβjdS = 0 (A.2)

δτL = E − 1

|S|

∫
S

Em(αi)dS = 0 (A.3)

δτVL = EV − 1

|S|

∫
S

EV
m(βj)dS = 0 (A.4)

Taking the derivative of equation (A.3) with respect to E yields:

Isym − 1

|S|

∫
S

∂Em

∂αi

∂αi
∂E

dS = 0 .

Taking the derivative of equation (A.4) with respect to EV yields:

Isym − 1

|S|

∫
S

∂EV
m

∂βj

∂βj

∂EV
dS = 0 .

21



It is also useful to note, that by the assumed independence of E and EV:

0 =
1

|S|

∫
S

∂Em

∂αi

∂αi

∂EV
dS

0 =
1

|S|

∫
S

∂EV
m

∂βj

∂βj
∂E

dS

From (A.1) and (A.2), we have the following Euler-Lagrange equations:

∂Ψm

∂αi
= τ :

∂Em

∂αi
,

∂Ψm

∂βj
= τV :

∂EV
m

∂βj
.

If their solution is denoted by α∗i and β∗j then our macroscopic energy becomes:

Ψ
(
E,EV

)
=

1

|S|

∫
S

Ψm(α∗i , β
∗
j ) dS .

The conjugate stress will be given by ∂Ψ/∂E and ∂Ψ/∂EV.

∂Ψ

∂E
=

1

|S|

∫
S

∂Ψm

∂α∗i

∂α∗i
∂E

+
∂Ψm

∂β∗j

∂β∗j
∂E

dS

=
1

|S|

∫
S

τ :
∂Em

∂α∗i

∂α∗i
∂E

+ τV :
∂EV

m

∂β∗j

∂β∗j
∂E

dS

= τ : Isym + τV : 0

= τ .

Similarly, for the viscous conjugate stress:

∂Ψ

∂EV
=

1

|S|

∫
S

∂Ψm

∂α∗i

∂α∗i
∂EV

+
∂Ψm

∂β∗j

∂β∗j

∂EV
dS

=
1

|S|

∫
S

τ :
∂Em

∂α∗i

∂α∗i
∂EV

+ τV :
∂EV

m

∂β∗j

∂β∗j

∂EV
dS

= τ : 0 + τV : Isym

= τV .

Appendix B. Linear Viscoelasticity

In the linear case, the strain measure chosen is the infinitesimal strain tensor
ε. We assume a microscopic strain tensor, εm = εem + εvm, which is decomposed
into a total elastic strain and a viscous strain. The micro-scale tensors are
constructed from three scalar fields εvol, εdev, and εvdev accounting for the total
volumetric, total deviatoric, and viscous deviatoric deformations, respectively.
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These correspond to α1, α2, and β1 from the general theory. The micro-scale
strains are given by:

εm = εvol
1

3
+ εdev

(
n⊗ n− 1

3

)
, (B.1)

εvm = εvdev

(
n⊗ n− 1

3

)
. (B.2)

Here we assume that the viscous strain is purely deviatoric and the vector n
denotes orientation on the sphere. An alternate micro-strain decomposition is
to have α1 = εa correspond to an axial stretch and α2 = εc correspond to a
transverse contraction. This is similar to the approach in Miehe et al. (2004)
and Bažant and Gambarova (1984) leading to:

εm = εan⊗ n+ εc (1− n⊗ n) , (B.3)

εvm = εvan⊗ n+ εvc (1− n⊗ n) . (B.4)

In the setting with axial and transverse micro-fields it is attractive, consid-
ering only the elastic case (i.e. no εvm), to have a micro-scale energy of the form
ψm = ψm,a(εa) + ψm,c(εc), where the ψm,a and ψm,c are quadratic. However
this Ansatz leads to Poisson ratios that are strictly negative for all positive
microscopic moduli. The negative values respect the thermodynamic limits of
the Poisson ratio being greater than −1, but one is not able to reach positive
values. This is not a result of the form of micro-scale strain measure, but due
to the postulated structure of the free energy. Since physically these terms are
coupled via a Poisson ratio effect, we cannot neglect a coupled free energy term.
Therefore, our model utilizes the volumetric and deviatoric kinematic variables
so that we are able to obtain the full range of thermodynamically admissible
Poisson ratios in the linear elastic case (no viscous phenomena). A similar prob-
lem with the Poisson ratio was also seen in the original affine micro-plane model
formulated by Bažant and Gambarova (1984), where it was only able to take
on values of 0.25 for two-dimesional problems and 1/3 for three-dimensional
problems. In the original formulation, only normal and tangential strain com-
ponents were considered for each micro-plane, which corresponds to equation
(B.3). This problem was fixed in Bažant (1988) by considering an additional
shear strain on each micro-plane along with decoupling the normal strain into
volumetric and deviatoric components; see also Carol et al. (2004).

Continuing, we can employ quadratic potentials for the microscopic free
energy and dissipation potential:

ψm =
1

2
K (εvol)

2
+

1

2
G∞ (εdev)

2
+

1

2
G1 (εdev − εvdev)

2
(B.5)

∆m =
1

2
ηG (ε̇vdev)

2
(B.6)

Here K, G∞, and G1 are the microscopic bulk modulus, equilibrium shear
modulus, and viscous shear modulus, respectively; ηG is a microscopic measure
of internal viscosity.
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Following the procedure outlined in the previous section, the macroscopic
free energy is defined as in equation (5) with the corresponding Lagrangian in
terms of the micro-kinematic variables and two Lagrange multipliers τ and τ v:

L(εvol,εdev, ε
v
dev, τ , τ

v) =

1

|S|

∫
S

1

2
K (εvol)

2
+

1

2
G∞ (εdev)

2
+

1

2
G1 (εdev − εvdev)

2
dS

+ τ :

(
ε− 1

|S|

∫
S

εmdS

)
+ τ v :

(
εv − 1

|S|

∫
S

εvmdS

)
.

As before, we define D(n) = n⊗ n− 1
31. The stationary conditions yield:

δεvolL =
1

|S|

∫
S

[
Kεvol − τ :

1

3

]
δεvol dS = 0 , (B.7)

δεdev
L =

1

|S|

∫
S

[G∞(εdev) +G1(εdev − εvdev)− τ : D(n)] δεdev dS

= 0 , (B.8)

δεvdev
L =

1

|S|

∫
S

[−G1(εdev − εvdev)− τ v : D(n)] δεvdev dS = 0 , (B.9)

δτL = δτ :

(
ε− 1

|S|

∫
S

εvol
1

3
+ εdevD(n) dS

)
= 0 , (B.10)

δτvL = δτ v :

(
εv − 1

|S|

∫
S

εvdevD(n) dS

)
= 0 . (B.11)

This set of linear equations is easily solved for the micro-kinematic variables
in terms of the Lagrange multipliers. If we then plug these results back into
the constraint equations, we can solve for the Lagrange multipliers in terms of
the macroscopic strains by splitting them into deviatoric and volumetric parts.
With this procedure one finds that the macroscopic free energy:

Ψ =
1

2
3Kε : Ivol : ε+

1

2
G∞

15

2

[
ε : Idev : ε

]
+

1

2
G1

15

2

[
(ε− εv) : Idev : (ε− εv)

]
,

(B.12)

where I = Idev + Ivol, Ivol = 1
31⊗ 1.

The conjugate stresses are the derivatives of the free energy with respect to
the strains, yielding:

τ =
∂Ψ

∂ε
= 3Kε : Ivol +G∞

15

2
ε : Idev

+ G1
15

2
(ε− εv) : Idev , (B.13)

τ v =
∂Ψ

∂εv
= −G1

15

2
(ε− εv) : Idev . (B.14)
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The evolution of the viscous strain is determined through the use of a dis-
sipation potential. The Lagrangian associated with relaxation problem (15)
subject to (16) is given by

L
(
ε̇vdev, τ

d
)

=
1

|S|

∫
S

1

2
ηG (ε̇vdev)

2
dS + τ d :

[
ε̇v − 1

|S|

∫
S

ε̇vdevD(n) dS

]
Following the same procedure above, the resulting variational equations are:

δε̇vdev
L =

1

|S|

∫
S

[
ηG · ε̇vdev − τ d : D(n)

]
δε̇vdevdS = 0 , (B.15)

δτ dL = δτ d :

[
ε̇v − 1

|S|

∫
S

ε̇vdevD(n)dS

]
= 0 . (B.16)

Solving these linear equations, and plugging back into the expression for the
macroscopic dissipation potential, gives the macroscopic dissipation potential
as:

∆ =
1

2
ηG

15

2

[
ε̇v : Idev : ε̇v

]
. (B.17)

Again it is easily shown that the conjugate stress to the dissipation potential is
the new Lagrange multiplier,

τ d =
∂∆

∂ε̇v
= ηG

15

2
ε̇v : Idev . (B.18)

Combining equations (B.12) and (B.17) with the Biot framework will determine
the evolution equation of the system:

inf
ε̇v

[
Ψ̇(ε, εv) + ∆(ε̇v)

]
,

or equivalently,

∂Ψ

∂εv
+
∂∆

∂ε̇v
= 0 , (B.19)

τ v + τ d = 0 . (B.20)

Substituting these relations back into the equation above:

ε̇v − G1

ηG
(ε− εv) : Idev = 0 . (B.21)

Considering (B.13) and (B.21), we see we have exactly the macroscopic model for
the standard linear solid when one identifiesK as the macroscopic bulk modulus,
15
2 G∞ as the macroscopic equilibrium modulus, 15

2 G1 as the macroscopic non-
equilibrium modulus, and 15

2 ηG as the macroscopic viscosity.
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Appendix C. Surface Integrals

For the derivations in Appendix B, the following results are helpful to know:

1

|S|

∫
S2

n⊗ n dS =
1

3
1 ,

1

|S|

∫
S2

n⊗ n⊗ n⊗ n dS =
1

15
(1⊗ 1 + 2Isym) ,

and
1

|S|

∫
S

D(n)⊗ D(n)dS =
2

15
Idev .
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