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Abstract

Radiation or absorbing boundary conditions are a requisite element of many
computational wave propagation problems. In this work we examine the
high-order absorbing boundary conditions with auxiliary functions first de-
veloped by Givoli and Neta and later modified by Hagstrom and Warburton.
Such boundary conditions have been proven to provide excellent behavior in
the time harmonic setting yet are formulated in a manner that makes them
also directly applicable to time domain computations. In this work we look
at two issues that have not received a lot of study: (1) uniqueness of the
solution and (2) the eigen-structure of the overall problem. Both issues are
intimately tied to the practical performance of such boundary conditions. In
particular we show from the eigen-structure that these higher-order absorb-
ing boundary conditions can not in general provide better long-time accuracy
than lower-order absorbing boundary conditions. Second we conjecture that
the (possible) non-uniqueness of solutions to the overall problem can lead to
the observed long-time instabilities seen in the literature.
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1. Introduction

Analysis of wave propagation in an unbounded domain has been of inter-
est in many fields including for example geotechnical engineering and elec-
tromechanics. Due to unboundedness, this type of problem does not allow di-
rect application of standard numerical solvers such as finite element methods
which require a finite domain. Thus one needs a completely new methodology
or a mapping of the problem to a finite domain. Within the class of mapped
methods, a natural one is to truncate the unbounded domain, introduce non-
physical boundaries around the resulting bounded domain, and then apply
appropriate boundary conditions on the new boundaries to mimic the effect
of the original unboundedness. These boundary conditions are called absorb-
ing or radiation boundary conditions and they have been important topics in
mathematics and engineering; see e.g. [1] or [2] for recent reviews. Among
several classes of absorbing boundary conditions, we focus our attention on
the Hagstrom and Warburton [3] high-order local absorbing boundary con-
ditions using auxiliary functions as first introduced by Givoli and Neta in
[4]. Additionally, we will examine the so-called complete radiation boundary
conditions also developed by Hagstrom and Warburton [5].

The Givoli and Neta [4] conditions are a re-writing of the classic high-
order Higdon conditions [6] from a high-order differential operator into a
recursive system of first-order differential operators using auxiliary variables.
Mathematically nothing is changed but it greatly facilitates numerical com-
putations due to the lowering of the differential order; this later point is
strongly aided by Givoli and Neta’s transformation of the normal boundary
derivatives into a second-order form using only tangential boundary deriva-
tives. It should be noted that the conversion to second-order form involves
a modeling choice and is non-unique. Hagstrom and Warburton [3] modified
the recursion form of [4] in a manner that squares the reflection coefficient
of [4] (when analyzing time-harmonic plane waves), symmetrizes the formu-
lation, and improves its overall behavior. However it should be noted that
example computations [3, Figs. 2 and 3] show a troubling instability in time,
viz., errors growing in time. Further, in a certain sense, low-order methods
are seen to perform better than high-order methods – essentially contradict-
ing the error analysis in the plane wave setting. Analytical work on stability
shows that the continuous form of the Givoli and Neta conditions and the
Hagstrom and Warbuton conditions to be stable [7, 8] but numerical com-
putations belie this point; in addition to the perviously cited examples, see
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also [7, Fig. 8], [9, Fig. 2], and [10, Figs. 7 and 8]. Similar remarks, vis-a-via
long time error, also pertain to the complete radiation boundary conditions
[5].

In this paper we look at the issues of stability and accuracy for the two
Hagstrom and Warbuton forms of the local high-order absorbing boundary
condition. It is our intent to explain the undesired numerical behavior which
appears when performing actual computations. In Section 2, we show ana-
lytically that solutions to problems with these types of boundary conditions
are not unique unless special care is taken with respect to the boundary
conditions and that the eigenvalues for such systems are nested; that is, by
increasing the order of the absorbing boundary conditions, one only adds,
and never removes, eigenvalues and eigenmodes. This latter issue is crucial
for the case where the accuracy of the solution is governed by the rate of
dissipation which is determined by the least negative eigenvalue in the sys-
tem (instead of the reflection coefficients). A problem of pulse excitation
belongs to this category. In Section 3, we introduce a second order formu-
lation of the complete radiation boundary conditions which also includes as
a special case the second order formulations proposed in [4, 3]. Finally in
Section 4, we numerically solve a two dimensional waveguide problem with
a pulse excitation using our second order formulations. We observe smaller
rates of dissipation for the higher order formulations after the pulse leaves
the domain, which reflects the issue of the nesting of eigenvalues discussed
in Section 2. Also, while complete radiation boundary conditions give stable
solutions for a long time, we observe that the use of the conditions in [3] leads
to polynomial growth of the error. The sources of this instability have not
been known, but we believe that we have made an improvement on this issue
through close observations of our example – viz. that they are associated
with a non-uniqueness issue. Section 5 concludes.

2. Analysis

2.1. Absorbing boundary conditions: Hagstrom and Warburton [3]

We start by considering the high-order absorbing boundary conditions
for a scalar wave problem in d-dimensional space proposed by Hagstrom and
Warburton in [3]. Let u(x, y, t) (y ∈ Rd−1) satisfy the scalar wave equation
on a domain D,

∇2u =
1

c2
ü on D, (1)
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Figure 1: Example waveguide problem. The hatches represent Dirichlet boundary con-
ditions. The waveguide is originally unbounded in the positive x direction, but this un-
boundedness is replaced by the absorbing boundary on ΓE .

with sources and boundary conditions in x < 0. We assume that the domain
D is unbounded and homogeneous in x > 0. We then truncate it at x = 0
and apply absorbing boundary conditions on the resulting artificial boundary.
Figure 1 shows an example waveguide problem. In this example, Dirichlet
boundary conditions are applied on ΓW , ΓN , and ΓS, and absorbing boundary
conditions are applied on ΓE, replacing the unbounded domain, x > 0. We
are interested in the error due to this substitution.

The high-order absorbing boundary conditions proposed in [3] is given
by,

(

cos φ0

c

∂

∂t
+

∂

∂x

)

u0 =
∂u1

∂t
, (2a)

(

cos φj

c

∂

∂t
+

∂

∂x

)

uj =

(

cos φ̄j

c

∂

∂t
−

∂

∂x

)

uj+1, (2b)

up+1 = 0, (2c)

for j = 1, . . . , p. In (2a) and (2b), u0(x, y, t) represents u(x, y, t), uj(x, y, t)
are auxiliary functions, and φj and φ̄j are parameters chosen in [0, π/2). p
is called the order of the absorbing boundary conditions, and we expect that
the error due to truncation decreases as one increases the order. In addition
to (2), we require uj to satisfy the wave equation, or,

∇2uj =
1

c2
üj on D. (3)
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Figure 2: Schematic pictures of a one-dimensional scalar wave problem with pulse exci-
tation at x = −1 and high-order absorbing boundary conditions at x = 0. (a), (b), and
(c) show the displacement fields before the pulse reaches the boundary for the original
unbounded problem and problems with absorbing boundary conditions of two different
orders p1 = 2 and p2 = 5. The ’∗’ represents each auxiliary function. (d) shows the exact
solution one would observe if the domain was unbounded right after the pulse left the do-
main. (e) and (f) show the reflections and the displacement fields for auxiliary functions
at the same time as (d) for the two different orders.

We are to impose (2) at x = 0 to represent the boundary derivatives on the
artificial boundary.

2.1.1. Uniqueness

We assume here that a set of solutions uj exists for the system character-
ized by (1), (2), (3), and boundary conditions for u on x < 0, for each given
order p, and that up(x, y, t) is not identically zero. We now consider two
problems, one of order p1 and one of higher order p2 > p1. To simplify the
discussion, we assume that for these two problems the same sets of parame-
ters φj and φ̄j are chosen for j = 0, 1, . . . , p1. By assumption, each problem

possesses a solution denoted by u
(1)
j and u

(2)
j with u

(1)
p1

6= 0 and u
(2)
p2

6= 0,
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respectively. One then realizes that the following functions give another set
of solutions to the problem of order p2:

uj = u
(1)
j j = 0, 1, . . . , p1,

uj = 0 j = p1+1, . . . , p2. (4)

Thus the solution to the problem is not unique unless appropriate boundary
conditions are specified for uj (j = 1, . . . , p). In general, such conditions
can not be known without first knowing the true solution u0.

2.1.2. Nested Eigenvalues

For these two systems of orders p1 and p2, one also observes that the latter
possesses all the eigenvalues and eigenmodes present in the former. Here we
refer to λ (Re(λ) ≤ 0) as the eigenvalues and uj as the eigenmodes in the
decomposition uj(x, y, t) = uj(x, y)eλt. This nesting can be readily shown
by setting,

u
(2)
j = u

(1)
j , j = 0, 1, . . . , p1,

u
(2)
j = 0, j = p1+1, . . . , p2,

where u
(1)
j and u

(2)
j are eigenmodes for systems of orders p1 and p2. Denoting

by S(1) and S(2) the sets of eigenvalues to the problems of order p1 and p2,
respectively, one can say sup{S(1)} ≤ sup{S(2)} This implies that the least
negative eigenvalue in the system of order p2 can be no smaller than that in
the system of order p1. The problem caused by these nested eigenvalues is
explained through a simple example. Suppose a one-dimensional half-space
problem with pulse excitation at x =−1. The domain is unbounded in the
positive x direction, but we truncate it at x = 0 and apply high-order absorb-
ing boundary conditions, say of orders p1 = 2 and p2 = 5. We compare the
exact solution of the original unbounded problem with solutions with these
absorbing boundary conditions. Before the pulse reaches the boundary, the
solutions should all look the same as shown in Figures 2(a), 2(b), and 2(c).
After the pulse hits the boundary, however, the exact solution should leave
nothing in the domain −1 ≤ x ≤ 0, while the absorbing boundaries cause
reflections which go back and forth between the two boundaries as they, hope-
fully, decay. The auxiliary variables are also excited. See Figures 2(d), 2(e),
and 2(f) for schematic pictures. The accuracy of the solutions by absorbing
boundary conditions is then eventually determined merely by the rates of
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dissipation in this phase of free vibration, which is governed by the least neg-
ative eigenvalues in the systems. Therefore, the analysis above implies that
a system with higher order boundary conditions can not converges to the
exact solution faster by nature, since sup{S(1)} ≤ sup{S(2)} ≤ 0. We also
note that, if the parameters φj and φ̄j for j = 0, 1, . . . , p1 are chosen inde-
pendently for the two systems of orders p1 and p2, the eigenvalues of the two
are not nested any more in general. However, it can be readily shown that
the least negative eigenvalue of the latter with optimal choices of parameters
can be no smaller than that of the former.

The observation above does not necessarily guarantee the poorer behav-
ior of higher order formulations in problems for which rates of dissipation
are concerned, since, due to the lack of uniqueness of the solution, physically
meaningful problems require additional restrictions and these restrictions can
prevent slowly dissipating modes of the higher order conditions from being
excited. Indeed in the duct problem with pulse input in [5], which was nu-
merically solved using the first order form of the scalar wave equation, slower
rates of dissipation for higher order formulations are not readily observable in
the plots presented. However, in the waveguide problem presented in Section
4 using the second order formulation derived in Section 3, we do observe the
poorer dissipation rates for larger values of p.

2.2. Complete radiation boundary conditions

We next consider the complete radiation boundary conditions proposed
in [5], which are given by,

(

cos φj

c

∂

∂t
+

∂

∂x
+

1

cT

sin2 φj

cos φj

)

uj =

(

cos φ̄j

c

∂

∂t
−

∂

∂x
+

1

cT

sin2 φ̄j

cos φ̄j

)

uj+1, (5a)

up+1 = 0, (5b)

where φj and φ̄j are defined as in (2) and T is an additional parameter with
dimensions of time. We also require uj to satisfy (3). Assuming again that
the system given by (1), (5), (3) with sources and boundary conditions for u
in x < 0 possesses a solution, one can show in the same way that the issues
of non-uniqueness of the solution and nested eigenvalues are also present in
this formulation.
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3. Second order formulation

To numerically solve the problem introduced in Section 2 with the finite
element method, for instance, it is computationally more efficient if the aux-
iliary functions uj live only on the boundary. However, in that case, the
normal derivatives on the boundary x = 0 appearing in (2) and (5) can not
be represented. To overcome this problem, we derive a family of second order
formulations, which includes the second order formulation in [3] as a special
case.

We first realize that one can rewrite the system of equations (5) in a
matrix form as,

M 1U ,x =
1

c
M 2U̇ +

1

cT
M 3U , (6)

where U = [u0, u1, · · · , up]
T and M1, M2, and M3 are (p + 1)× (p + 1)

matrices of coefficients in (5). M1 being invertible, we have,

U ,x =
1

c
M tU̇ +

1

cT
M 0U , (7)

where M t = M−1
1 M2 and M 0 = M−1

1 M3. Here, M t and M 0 as well
as M 1, M 2, and M 3 are upper-triangular matrices. Note that the first
row of equation (7) enables one to replace the normal boundary derivative
of u0 on x = 0 merely with time derivatives of uj, which helps in numerical
implementations. Now, taking another x-derivative of equation (7) and using
(7) again to eliminate arising x-derivative terms on the R.H.S., we obtain a
necessary condition to the set of equations (7), or,

U ,xx =
1

c2
M 2

t Ü +
1

c2T
(M tM 0 + M 0M t) U̇ +

1

c2T 2
M 2

0U . (8)

Since we force each uj(x, y, t) to satisfy the wave equation, we can rewrite
(3) as,

U ,xx + ∇2
tanU =

1

c2
Ü ,

where ∇2
tanU represents the Laplacian of U on the boundary. With this we

can eliminate U ,xx in (8) and obtain,

T 2
(

M 2
t − I

)

Ü + T (M tM 0 + M 0M t) U̇ + M 2
0U + c2T 2∇2

tanU = 0,
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which only involves time derivatives and spatial derivatives in y-directions,
and so allows discretization on x = 0. Finally, one can multiply this equation
by any (p + 1)×(p + 1) invertible matrix, say D, and obtain,

T 2D
(

M 2
t − I

)

Ü + TD (M tM 0 + M 0M t) U̇

+ DM 2
0U + c2T 2D∇2

tanU = 0. (9)

We then replace equations (5) with (9). Note that a similar analysis as
given in Section 2 shows that the overall problem remains, in general, non-
unique and the eigenvalues nested. Regarding the non-uniqueness of the
solution, our new system also possesses more solutions since it is the necessary
condition of the original. We also note that, by merely discretizing p rows out
of p+1 of (9) along the boundary, we obtain a sufficient number of equations
for determining the p auxiliary functions, and we are to ignore one row in
(9). In the waveguide example given in Section 4, we realize that elimination
of the last row happens to exclude the solutions of the form given in (4) upon
discretization, and we can indeed obtain a unique solution in the case of the
complete radiation boundary conditions.

Finally, we observe that the numerical solution is very sensitive to the
choice of D, even though it is not in the continuous setting. A choice of D

which gives a satisfactory solution was found, motivated by the coefficients
in the second order formulation in [3], by,

D =



















a1 a0+a1 a0 0 . . . 0
0 a2 a1+a2 a1 . . . 0
0 0 a3 a2+a3 . . . 0
0 0 0 a4 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1



















. (10)

Also note that by setting M 1(1, 2) = 0, M 2(1, 2) = 1, and M 3 = 0, or
equivalently M 0 = 0, and selecting D as,

D =



















2a1 1 1 0 . . . 0
0 a2 a1+a2 a1 . . . 0
0 0 a3 a2+a3 . . . 0
0 0 0 a4 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1



















, (11)
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we recover the second order formulation of [3]; in (10) and (11) we have
introduced aj = cos φj = cos φ̄j.

4. Numerical examples

We now solve a two-dimensional waveguide problem for the scalar wave
equation to demonstrate the behavior of the high-order absorbing boundary
conditions using the second order formulation derived in Section 3; see Figure
3 for geometry and notation. The depth of the waveguide is 1 unit and the
speed of the wave is c = 1 unit. We apply a pulse excitation,

u

(

−
1

2
, y

)

=

{

cos (πy) (1 − cos 4πt) , 0 ≤ t ≤ 1/2

0, 1/2 < t
(12)

on ΓW and homogeneous Neumann boundary conditions on ΓN and ΓS. We
truncate this infinitely long waveguide at x = 0 and apply the different types
of absorbing boundary conditions mentioned earlier, where we consistently
set φj = φ̄j and choose their values according to the Gauss quadrature nodes
in [0, π/2) motivated by [5]. We also set T = 1. We use an implicit 2nd
order accurate Newmark scheme (β = 1/4, γ = 1/2) for time-stepping with
∆t = 0.01 and a finite element method with 16× 8 square bi-cubic elements
in Ω and 16 cubic elements for each uj along ΓE. The discretization along the
boundary requires boundary conditions for each auxiliary function ∂uj/∂y
at both ends of ΓE. In this example, we assume that the same boundary
conditions as for u0 on ΓN and ΓS can be applied; i.e. we set ∂uj/∂y = 0 on
ΓN

⋂

ΓE and ΓS

⋂

ΓE as in [7].
We first apply the second order formulation introduced in [3], that is,

we set M 1(1, 2) = 0, M 2(1, 2) = 1, M 0 = 0 and choose D given in (11).
Figure 4 shows the plots of log ||u0||2 on ΓE against log t. We observe that
a polynomial growth, or a linear growth in log-log scale, of the l2-norm be-
comes evident after a long time. To explain this instability, we consider the
homogeneous part of the equations of motion obtained by discretizing (1)
and (9) along with the first row of (7) in space and applying the boundary
condition (12) on ΓW , or,

Mü + Cu̇ + Ku = 0, (13)

where M , C, and K are mass, damping, and stiffness matrices, and u =
[u0,u1, . . . ,up]

T is a set of nodal displacements including those for auxiliary
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Figure 3: Waveguide setup.
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Figure 4: Plots of log
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||u0||2 on ΓE versus log
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t for select orders for the modified formu-
lation. [3]
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functions. We then set u(t) = ueλt with u = [u0,u1, . . . ,up]
T in the semi-

discrete system (13), and obtain,
(

λ2M + λC + K
)

u = 0. (14)

Here, since the stiffness matrix K in (14) stems only from the discretization
of the second order spatial derivatives in (1) and (9), a vector u with,

uk = non-zero constant for one k ∈ {1, . . . , p},

uj = 0 j = 0, 1, . . . , k−1, k+1, . . . , p,

satisfies Kū = 0 and so is an eigenvector corresponding to eigenvalue λ = 0
according to (14). Indeed, we observe 2p zero-eigenvalues when we consider
the equivalent first order system to equation (13),

[

I

M

] ˙[

u

v

]

=

[

I

−K −C

][

u

v

]

, (15)

where v = u̇. The coefficient matrix on the L.H.S. being invertible, we can
rewrite (15) as,

˙̃u = Aũ, (16)

where ũ = [u,v]T . A can be written in Jordan canonical form with some
invertible matrix W as,

A = WΛW−1,

where

Λ =











Λ1 0 . . . 0

0 Λ2 . . . 0
...

...
. . .

...
0 0 . . . Λs











, and, Λk =















λk 1 . . . 0 0
0 λk . . . 0 0
...

...
. . .

...
...

0 0 . . . λk 1
0 0 . . . 0 λk















Nk×Nk

. (17)

In equation (17), s is the number of distinct eigenvalues of A, λk is the k-th
eigenvalue, and Nk is the number of repetition of λk. We now rewrite (16)
as,

˙̂u = Λû, (18)
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Figure 5: Plots of log
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||u0||2 on ΓE versus log
10

t for select orders for the complete radi-
ation boundary conditions.

where û = W−1u.
Here we can arbitrarily set λ1 = 0 so that Λ1 is a 2p×2p square matrix of

the form given in (17) with all diagonal elements zero. In this case, we can
solve the first 2p rows of (18) explicitly, starting from the 2p-th row towards
the first, as,

˙̂u2p = 0 ⇒ û2p = c0,

˙̂u2p−1 = c0 ⇒ û2p−1 = c0t + c1,

˙̂u2p−2 = c0t + c1 ⇒ û2p−2 =
1

2
c0t

2 + c1t + c2,

...

where ûk is the k-th element of the transformed nodal displacement vector û

and c0, c1, . . . are constants. These modes, growing in time, are excited due
to numerical errors. Indeed, the plots of ||u0||2 for p = 2 and p = 4 in Figure
4 are almost straight after a long time, and if we linearly extend these lines
we realize that the intersections with the vertical line log10 t = −2 = log10 ∆t
are of order 10−14, which is a reasonable value for round-off errors.

These instabilities are not observed when we use the complete radia-
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Figure 6: Plots of log
10

||u0 − uexact||2 on ΓE versus t for select orders for the complete
radiation boundary conditions.

tion boundary conditions in second order form with (10), for which we have
M 0 6= 0 in (9), suggesting that additional contributions from the zero-order
displacement term contributes to the stiffness matrix K in (14) in a manner
such that the above analysis on the repeated zero-eigenvalues does not hold
any more. Indeed, we observe that all the numerical eigenvalues are negative
and the solutions stay stable even after a long time; see Figure 5. Though
the issues on instability can be resolved in this way, Figure 5 shows slower
convergence of the higher order formulations which is consistent with our
analysis on eigenvalues in Section 2. On the other hand, for the first short
period where reflection from the boundary governs the accuracy, higher order
conditions do give smaller errors as expected, as shown in Figure 6, where
the exact solution, uexact, was computed in an extended waveguide.

Finally, we set D(1, 2) = 0 in the above analysis to see the sensitivity
of the solutions to the choice of D. This scheme almost instantly becomes
unstable and shows exponential growth of the l2-norm of the solution com-
puted on ΓE. See Figure 7 for plots of ||u0||2 versus t for select orders. We
indeed observe positive numerical eigenvalues in this system.
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boundary conditions with inappropriate choice of D.

5. Conclusion

Several issues associated with high-order absorbing boundary conditions
were discussed analytically and numerically. In particular we have high-
lighted the fact that the introduction of auxiliary variables adds the need for
additional boundary conditions which are in general unknown. In our exam-
ple, we observed polynomial growth of errors with the second order formu-
lation developed in [3] due to the presence of repeated zero-eigenvalues, and
exponential error growth with the complete radiation boundary conditions
in [5] with a certain choice of D, while these instabilities were not observed
with the complete radiation boundary conditions with an appropriate choice
of D. This resolution however is merely a one-off example and certainly a
more robust solution is desirable. We have additionally noted, despite the
proven satisfactory behavior of this class of radiation boundary conditions
in terms of the reflection coefficients, that higher orders do not necessarily
lead to better numerical results when dealing with problems where rates of
dissipation are crucial.
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