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Coulomb-type electrostatic chucks are considered to be a key-technology
for the next generation extreme-ultra-violet lithography. The electrostatic
pressure holds the photo-mask during the fabrication process in vacuum.
Different formulas appear in the literature on how to relate this electro-
static pressure to the applied voltage on the chuck electrode. We discuss
the physical meaning of the corresponding formulations and also consider
the implications for correct boundary conditions during finite element sim-
ulations.

1. Introduction

In order to model the forces acting in a Coulomb-type electrostatic chuck
system holding a photo-mask, assume an ideal capacitor as pictured in Fig. 1.
Two conducting plates are separated by the chuck dielectric with thickness d
and relative permittivity ǫr, and a vacuum gap of size δa > 0. Let the lower
plate represent the chuck electrode which is fixed in space. The upper plate
is assumed to be a rigid mask with a conducting back-side layer, which is
held by a force F to ensure static equilibrium. We assume the dielectric to
be perfect in the sense that no leakage current occurs; i.e. we focus in this
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Figure 1: Schematic of electrostatic forces acting on mask back-side and
chuck dielectric/-electrode when δa > 0.

1



2

V

d

0

x

pc,0

pc,0
ǫr

Figure 2: Schematic of electrostatic forces acting on mask back-side and
chuck dielectric/-electrode during full contact.

analysis on a Coulomb-type electrostatic chuck as opposed to a Johnsen-
Rahbek electrostatic chuck (see e.g. [1]). We also assume that the dielectric
is rigid, homogeneous, linear and neutrally charged. We will show that due
to a potential difference V between the conducting mask back-side and the
chuck electrode, the following pressures are acting on the mask back-side,
the top surface of the dielectric and the chuck electrode respectively:

p(δa) =
ǫ0ǫ

2
rV

2

2(d+ ǫrδa)2
(1)

pd(δa) =
ǫ0(ǫ

2
r − ǫr)V

2

2(d+ ǫrδa)2
(2)

pc(δa) =
ǫ0ǫrV

2

2(d+ ǫrδa)2
, (3)

where ǫ0 is the permittivity of free space and equal to 8.85×10−12 C2/Nm2.
Recent literature commonly agrees on the use of (1) as the pressure acting
on the mask back-side (see e.g.[2, p.45], [3], [4], [1], [5], [6], [7] or [8]). An
early publication by [9] states (3) as the electrostatic pressure acting on the
mask and chuck. We find this to be incomplete and require (2) acting on
the dielectric, such that the overall electrostatic pressure acting on the chuck
adds up to (1).

Consider next the situation where F = 0; i.e. the mask is in contact with
the chuck dielectric as illustrated in Fig. 2. As we will show, the contact
pressure acting at the top and bottom surface is equal to

pc,0 = pc(0) =
ǫ0ǫrV

2

2d2
. (4)

This formula was established by [9] and is used for example by [10], [11],
[12], [13], [14], [15], [16] and [5]. However, recent publications by [7] or [4]
propose to use p(0) as the chucking pressure when δa = 0, as opposed to
pc,0 which differs by a factor ǫr. In the following discussion we argue that
both formulations have their validity, depending on their use for example in
finite element simulations.
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2. Electrostatic Pressure Calculation

Let us first derive the electrostatic pressures for the different cases men-
tioned above. We will carry out a direct calculation via the Maxwell stress
tensor (MST) and also compare the results to variations in the potential
energy.

As stated in [17, p.66], the MST in the presence of a dielectric material
is given by

T = E⊗D−
1

2
(E ·D) I , (5)

where I is the rank-2 identity. E is the total electrical field and D = ǫE the
electrical displacement, with ǫ = ǫ0ǫr in the linear dielectric chuck material
and ǫ = ǫ0 in vacuum. We assume that the resultant force on any volume
R if given by

f =

∫

∂R

Tn . (6)

Across a surface of discontinuity in T, this will give us the traction acting
on the surface as

[[T]]n . (7)

Here we denote the jump [[T]] = T+ − T−, where +− indicate the values
slightly above the surface in the n direction, or below the surface respec-
tively.

Assume now a geometry as shown in Fig. 1. By employing Gauss’ law,
one can easily verify that the magnitude of the total electrical field is given
by E = −E(x)x̂, with

E(x) =



















0, x < 0
σf

ǫ0ǫr
, 0 < x < d

σf

ǫ0
, d < x < d+ δa

0, d+ δa < x ,

(8)

where σf is the free surface charge density on the conducting plates. The
important MST component

Txx(x) =























0, x < 0
σ2

f

2ǫ0ǫr
, 0 < x < d

σ2

f

2ǫ0
, d < x < d+ δa

0, d+ δa < x .

(9)

Since in e-chucking applications we control the potential difference rather

than the surface charges, we use V =
∫ d+δa
0

Edx to derive

σf =
ǫ0ǫrV

d+ ǫrδa
. (10)
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For the case that δa > 0, we then get by (7),(9), and (10) the electrostatic
pressure acting on the mask back-side as

p = Txx(d+ δa)
− − Txx(d+ δa)

+ =
ǫ0ǫ

2
rV

2

2(d+ ǫrδa)2
, (11)

which is equivalent to (1). For the pressure acting on the top-surface of the
chuck dielectric

pd = Txx(d)
+ − Txx(d)

− =
ǫ0(ǫ

2
r − ǫr)V

2

2(d+ ǫrδa)2
, (12)

which is equivalent to (2) and

pc = Txx(0)
+ − Txx(0)

− =
ǫ0ǫrV

2

2(d+ ǫrδa)2
(13)

for the pressure acting on the chuck electrode as stated in (3). In a similar
fashion we derive for the case δa = 0 as pictured in Fig. 2 the pressure

pc,0 = Txx(0)
+ − Txx(0)

− =
ǫ0ǫrV

2

2d2
(14)

as given by (4).
Note that (1)-(4) can also be derived by considering the potential energy

stored in the total system capacitance which is related to the electric field
and the electric displacement. As shown for example in [18, p.192], the
energy of the system 1 can be obtained by

W =
1

2

∫

D ·E . (15)

From this we find using (8) and (10) the energy per unit area as

w(d, δa) =
ǫ0ǫrV

2

2 (d+ ǫrδa)
. (16)

For the case where L = d + δa is fixed, we define the energy per unit area
as ŵ(d) = w(d, L− d). One can then verify that

p =
∂

∂δa
w(d, δa) (17)

pd = ŵ′(d) (18)

pc =
∂

∂d
w(d, δa) (19)

pc,0 =
∂

∂d
w(d, 0) , (20)

which is equivalent to what we obtained before.

1Here we refer to the energy associated with the separation of the free and bound charges,
as well as the polarization of the molecules in the dielectric material.
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Figure 3: Schematic of elastic chuck dielectric with stiffness Y , rigid mask
and pressures acting during (a) no-contact, (b) touch-down and (c) full-contact
state.

3. Elastic Chuck Dielectric and Finite Element Boundary

Conditions

We now wish to discuss the case where the mask and the chuck are in
contact. As mentioned earlier, two formulas for the pressure acting on the

bodies can be found in the literature, namely pc,0 =
ǫ0ǫrV

2

2d2
and p(0) = ǫ0ǫ

2
rV

2

2d2
.

In order to explain the differing factor of ǫr, we consider the chuck dielectric
as an elastic body.

Assume an elastic dielectric layer of the chuck with Young’s modulus
Y . We picture three different states in Fig. 3. In Fig. 3(a) there is no
contact between the mask and the chuck dielectric, the vacuum gap is δa, and
we consider a stretch of the dielectric resulting from the pressure pd(δa).

2

Assume that the mask approaches the chuck and is held by force F to ensure
static equilibrium. Just before the contact is established, the stretch in the
chuck dielectric is measured as ∆d, which is pictured in Fig. 3(b) and referred
to as the touch-down state. When F = 0, the chuck dielectric is compressed
by the pressure pc,0 = p(0)− pd(0) as shown in Fig.3(c).

If we want to know the pressure that is necessary in order to release the
mask from the dielectric (i.e. bring the system back to the touch-down
state), we require a force p(0) acting on the mask. The pressure p(δa) is also
the total pressure acting on the chuck and the mask when there is no contact.

2In Appendix A we will argue that typical stretches of the dielectric are small and that
it is not necessary to account for the variation of d when calculating the electrostatic
pressures.
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Figure 4: Loading boundary conditions for finite element simulations: (a)
gap-dependant pressure on mask back-side and chuck dielectric/-electrode, (b)
gap-dependant pressure on mask back-side and chuck boundary surface, (c)
constant pressure approximation.

Thus it seems reasonable to use a simplified finite element model as pictured
in Fig. 4(b). Here we apply a pressure p depending on the vacuum gap δa
on the boundary surface of the chuck and mask back-side surface. This
allows us to avoid the modeling of a dielectric layer with the corresponding
pressures as pictured in Fig. 4(a). Furthermore, note that we can avoid a
gap-dependant boundary condition formulation whenever δa/d ≪ 1 as we
remark in Appendix A. As pictured in Fig. 4(c), we then apply only the
constant pressure p(0) on both surfaces.

4. Conclusions

We calculated the electrostatic pressures for a Coulomb-type electrostatic
chuck under idealized conditions. In particular, we considered the pressures
acting on the mask back-side, the chuck dielectric and -electrode and are able
to explain the differences in the literature concerning the relation between
the electrostatic pressure and the applied voltage. Finally, the implications
for correct boundary conditions as used for example in finite element simu-
lations are noted.
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Appendix A. Approximations

We briefly justify the idealization of a rigid dielectric material for the elec-
trostatic pressure calculation and discuss the validity of a constant pressure
approximation as a further simplification as often used for example in finite
element simulations.

In order to estimate the sensitivity of the electrostatic pressure versus the
dielectric thickness, we linearize (1) at δa = 0. By varying d, we obtain the
estimate

∣

∣

∣

∣

∆p

p

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∆d

d

∣

∣

∣

∣

. (21)

Consider a numerical example, where the mask and chuck are just in contact;
i.e. δa = 0. If we assume a typical dielectric constant ǫr = 4, and an
electrostatic pressure p = 15 kPa, we obtain by (2) a tensile force on the
dielectric pd = 11 kPa. Let us assume the Young’s modulus of the material
to be Y = 90 GPa. By taking the ratio, we estimate the relative change
in the dielectric thickness as |∆d/d| = pd/Y = 10−7, and then by (21),
we obtain a relative change in the pressure of |∆p/p| = 2 · 10−7. This is
negligibly small and thus justifies the assumption of a constant dielectric
thickness for the given example.

Finally note the sensitivity of the electrostatic pressure calculation via (1)
on the air gap δa. By varying the air gap δa, we obtain

∣

∣

∣

∣

∆p

p

∣

∣

∣

∣

= 2ǫr

∣

∣

∣

∣

∆δa
d

∣

∣

∣

∣

. (22)

In e-chucking applications, the peak-to-valley in the non-flatness of the mask
back-side corresponds to ∆δa in the idealized model. From (22) we see
that whenever |∆δa/d| ≪ 1, the resulting pressure variation is negligible.
Thus, as a further simplification of the model as proposed in Section 3, it is
reasonable to assume a constant pressure of magnitude

p =
ǫ0ǫ

2
rV

2

2d2
(23)

acting on the mask back-side and the chuck, whenever |∆δa/d| ≪ 1. This
was also observed in [19], where small ratios |∆δa/d| would not alter the pre-
diction of the mask deformation when comparing a gap dependant pressure
formulation via (1) and the constant pressure approximation (23).


