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Abstract

In this brief note, we present the results of a full finite deformation
analysis of a system similar to the Oakland-San Francisco Bay Bridge
saddle repair system. The bars are assumed to be pre-stressed and pivot
freely at their attachment points. The dimensions used are for illustration
purposes but are in intended to be in the range of those associated with
the real system. The saddle system is seen to be unstable as designed. If
the attachment points are moved to lie between the main pins, then the
system is seen to be stable (self-centering).

1 System

The Oakland-San Francisco Bay Bridge saddle repair system is shown in Fig.
1(left). This basic system was used to repair a cracked eye-bar on the bridge
in early September 2009. In mid October 2009, the repair system failed in
a dramatic fashion. It was re-installed with some modifications at the end
of October 2009 but still retains the basic characteristics shown. It consists
of two saddle pieces that cup to the upper and lower pins holding the eye-
bars. The saddles are pulled together by four pre-stressed bars (two used in
this simplified 2 dimensional analysis). In this analysis, the bars are assumed
to be connected to the saddles by frictionless pivots. The primary degrees of
freedom for the system are the rotations of the top and bottom saddles, θ1

and θ2, respectively. Each saddle can rotate independently of the other. With
rotation, the attachment points for the bars move resulting in changes in strain
in the bars. A proper analysis of this system requires the consideration of finite
deformation kinematics since higher than second order kinematics are needed to
make a definitive statement on the system’s stability. Shown in Fig. 1(right) is
an alternative configuration where the attachment points for the bars are inside
the main-pins. This configuration is also analyzed.

2 System potential energy

The potential energy of the system consists of the stored elastic energy in the
two bars.

Π(θ1, θ2) =
1
2
k∆2

1(θ1, θ2) +
1
2
k∆2

2(θ1, θ2) , (1)
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where k is the stiffness of the bars and ∆i their length changes from their
reference unstressed lengths Lo

i . The ∆i depend on the pre-stressing and the
rotations θ1 and θ2. In our evaluation we account for the bars going slack by set-
ting the energy contribution to zero when the distance between the attachment
points falls below the unstressed lengths. In our examples we have assumed a
pre-stressing of 200 N/mm2 (equivalent to a 1 milli− strain pre-strain). The
pre-strain displacement δi = Lo

i εpre and thus

∆i = δi +
∥∥[R(θ1)x

top
i + xpp]−R(θ2)xbottom

i

∥∥− Lo
i , (2)

where xtop
i is the vector from the center of the upper main-pin to the top

attachment point of the bar, xbottom
i is the vector from the center of the lower

main-pin to the bottom attachment point of the bar, and xpp is the vector
from the center of the lower main-pin to the center of the upper main-pin. The
rotations

R(θi) =
[

cos(θi) − sin(θi)
sin(θi) cos(θi)

]
(3)

and account for full finite rotations which are important when considering
the kinematics of the system when the saddles co-rotate. Stability of the
system can be assessed by an examination of the structure of the potential
energy with respect to kinematic variations; see e.g. classical texts such as
[Timoshenko and Gere(1961), Fung(1965)].

2.1 Case 1: Installed configuration

Shown in Fig. 2 is the potential energy of the system with respect to the saddle
rotations. When the saddles counter rotate the energy grows and the system is
seen to be stable against this type of motion. A section cut of the energy surface
for θ1 = −θ2 is shown in Fig. 3(top) to emphasize this point. Also shown in Fig.
3(middle,bottom) are the strains in the bars along this path. Depending upon
the direction of rotation one bar unloads and the other loads. With excessive
rotations individual bars can go slack. Shown in Fig. 4(top) is a section of the
energy surface when the saddles co-rotate (θ1 = θ2). The system is seen to be
unstable with respect to this motion. As shown in Fig. 4(middle,bottom), both
bars release their pre-strain when the saddles co-rotate. Due to the concave
potential energy profile, this unloading will occur spontaneously. The only re-
straint to this instability will come from friction between the main-pin and the
saddle (or any hard rotation-stops that may exist in the system). It should also
be noted that if either the top or bottom saddle is held in a stop and the other
saddle is left free, then this configuration is stable; see Figs. 5 and 6.

2.2 Case 2: Alternative configuration

As an alternative to the as installed configuration, we also consider a configura-
tion where the attachment points of the bars are placed between the main-pins
as shown in Fig. 1(right). Figure 7 shows the potential energy of the system
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Figure 1: Configuration analyzed: (Left) Bar attachments above the main pins.
(Right) Bar attachments between the main pins. Bars are assumed to be at-
tached with pin joints (shown in blue). Drawing is not to scale. Assumed
dimensions are given for illustrative purposes (actual values differ).
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Figure 2: Potential energy in arbitrary units as a function of the saddle rotations
for Case 1. Red values are higher than blue values. At the equilibrium point
the energy possesses a saddle point structure.
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Figure 3: Case 1 System behavior for counter rotating saddles (θ1 = −θ2).
(Top) Potential energy is seen to be stable. (Middle) Strain in bar 1. (Bottom)
Strain in bar 2. Strains are zero when the bars go slack.
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Figure 4: Case 1 System behavior for co-rotating saddles (θ1 = θ2). (Top)
Potential energy is seen to be unstable. (Middle) Strain in bar 1. (Bottom)
Strain in bar 2. Strains are zero when the bars go slack.
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Figure 5: Case 1 System behavior with top saddle fixed (θ1 = 0; θ2 free). (Top)
Potential energy is seen to be stable. (Middle) Strain in bar 1. (Bottom) Strain
in bar 2. Strains are zero when the bars go slack.
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Figure 6: Case 1 System behavior with bottom saddle fixed (θ1 free; θ2 = 0).
(Top) Potential energy is seen to be stable. (Middle) Strain in bar 1. (Bottom)
Strain in bar 2. Strains are zero when the bars go slack.
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Figure 7: Potential energy in arbitrary units as a function of the saddle rotations
for Case 2. Red values are higher than blue values. At the equilibrium point
the energy possesses a (stable) bowl like structure.

with respect to the saddle rotations. When the saddles counter rotate the energy
grows and the system is seen to be stable against this type of motion. A section
cut of the energy surface for θ1 = −θ2 is shown in Fig. 8(top). This behavior
is quite similar to Case 1. Also shown in Fig. 8(middle,bottom) are the strains
in the bars along this path and they show similar behavior to Case 1. With
excessive rotations individual bars can go slack as before. Shown in Fig. 9(top)
is a section of the energy surface when the saddles co-rotate (θ1 = θ2). The
system is seen now to be stable with respect to this motion in contradistinction
to Case 1. As shown in Fig. 9(middle,bottom), both bars pick up strain when
the saddles co-rotate and do not unload. Due to the convex potential energy
profile, this mode of deformation will not occur spontaneously and thus the
system is self-centering

3 Conclusion

A simple and straightforward analysis shows that the as designed repair system
is inherently unstable and that a simple reconfiguration eliminates this problem.
A broader question, which requires precise access to the system’s geometry and
properties, is whether or not this instability lead to the repair system’s failure.
Notwithstanding, it is clear that such instability is not helpful and can in the
mind’s eye easily lead to many deleterious effects, such as repeated large system
motions, transverse loads on truss-members, etc.
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Figure 8: Case 2 System behavior for counter rotating saddles (θ1 = −θ2).
(Top) Potential energy is seen to be stable. (Middle) Strain in bar 1. (Bottom)
Strain in bar 2. Strains are zero when the bars go slack.
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Figure 9: Case 2 System behavior for co-rotating saddles (θ1 = θ2). (Top)
Potential energy is seen to be stable. (Middle) Strain in bar 1. (Bottom) Strain
in bar 2. Strains are zero when the bars go slack.
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