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Abstract: In molecular dynamics simulations, an integrator-induced reso-
nance is observed for conservative molecular system subject to the classical
equations of motion when a Verlet integrator or Implicit Midpoint scheme is
used. In this report, an existing variational integrator with adaptive timesteps
is introduced to handle resonance. This Symplectic-Energy-Momentum (SEM)
preserving algorithm is first applied to a diatomic molecule governed by a
Morse potential and then it is further applied to a 22-atom model system.
Computational experiments indicate that the SEM algorithm can avoid energy
resonances and produce more accurate sampling of phase space. Moreover, it
can increase the feasible timestep and hence has the potential to improve the
simulation times. These are the main advantages over other fixed timestep
methods. Its main disadvantage, however, is that the algorithm is compu-
tationally more expensive since one needs to solve a complicated nonlinear
system of equations during its use.

Keywords: Molecular Dynamics, Resonance, Symplectic-Energy-Momentum
Preserving

1 Introduction

In molecular dynamics simulations, complex atomic motion is followed by nu-
merically integrating Newton’s classical equations [1]

MV̇ (t) = −∇Ep(X) (1)

Ẋ(t) = V (t) (2)
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where M is a mass matrix, X is the vector of atomic positions, V is the
corresponding velocity vector, and Ep is the potential energy. Because the
multivariate potential energy landscape is usually highly non-convex and the
resulting effective forces are nonlinear, molecular dynamics simulations are
very costly in most cases.

Typically the Newtonian equations of motions are solved numerically using
explicit schemes such as Verlet. Such schemes are simple to formulate and fast
to solve, but they are known to induce resonance. Also, they impose a severe
restriction on the integration time step size: ∆t must be at least as small as
the most rapid vibrational mode. This generally limits ∆t to be in the fem-
tosecond (10−15 s) range. This in fact is the typical step size used in molecular
dynamics simulation programs such as CHARMM. Since key conformational
changes in biomolecules occur on time scales of 10−12 − 102 s, considerable
effort has focused on increasing the integration time step.

Implicit numerical integrators with high stability have been introduced to
molecular dynamics simulations since these integrators usually permit a larger
step size than Verlet. However, implicit integrators are computationally more
demanding since one has to solve a complicated system of equations which are
usually nonlinear in every step. Moreover, most implicit integrators such as
the midpoint scheme can only delay energy resonance. When the step size in-
creases and hits specific values, resonance occurs and leads to incorrect phase
diagrams.

Symplectic numerical integrators for Hamiltonian systems have been the focus
of researchers in recent years. ‘Symplectic’ means the preservation of a specific
two-form mathematically and the preservation of areas in phase space physi-
cally. Symplecticness is a desirable property which usually leads to long-time
stability of the method since Hamiltonian systems are symplectic as well as
energy and momentum preserving themselves [2, 9]. For problems in the linear
regime, symplectic integrators are known to conserve energy and stability holds
at large step sizes[18]. However, this is not the case for nonlinear systems. Im-
plicit midpoint and Verlet, for instance, are both symplectic integrators but
they still induce resonance when applied to Morse oscillators. Instability, or
large energy fluctuation, occurs at timesteps that still satisfy the linear stabil-
ity condition and these instabilities usually can only be avoided by reducing
the timestep[21]. In other words, this sort of nonlinear instability sets a further
timestep limitation. There has been a recent effort to find integrators which
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preserve as many structural properties as possible to circumvent this limitation
and achieve long simulation times. Unfortunately, a well-known theorem has
limited the possibility that constant time stepping algorithms be symplectic
and energy and momentum preserving[7]. As a consequence, a constant time
stepping algorithm can only be energy-momentum preserving or symplectic-
momentum preserving.

It should be pointed out that structure preservation and accuracy are two
different concepts. Structure preserving integrators alone can not guarantee
accurate trajectories which can only be obtained with high-order methods and
small time steps[10]. High-order methods, on the other hand, may not preserve
structural properties such as energy and momentum. Second order Newmark
methods and fourth order Runge-Kutta methods have long been applied to
conservative systems [11, 13] and their energy-momentum behaviors indicate
that the Newmark family of methods has a fluctuating energy and momentum
which is typical of symplectic methods as opposed to the divergent behaviors
of classical Runge-Kutta, see Fig.1 (due to Kane et al, [11]). For systems with
friction, say, simple Rayleigh type dissipation, Newmark methods also accu-
rately simulate energy decay, unlike standard methods such as Runge-Kutta
schemes. This is a clear demonstration of the fact that traditional measures
of integrator accuracy, such as truncation error, are not necessarily appro-
priate when discussing these kinds of structure preserving schemes, as they
often perform far better than expected. Some high-order classical numeri-
cal algorithms show deficiency in long-time performance. This also implies
that one should consider a trade-off between accuracy and structure preserv-
ing properties when choosing integrators. Particularly, for those systems with
complicated, unstable, or chaotic trajectories, such as biomolecules, one should
probably concentrate on statistical properties and approach the true solution
by preserving as much of the structure as feasible[10].

The nice structure preserving properties of Newmark methods are due to their
variational nature, which is believed to be one of the primary reasons why this
class of algorithms performs well[11, 12, 23]. The classical Newmark family
with γ = 1/2 as well as related integration algorithms are variational in the
sense of the Veselov formulation of discrete mechanics. Such variational al-
gorithms are symplectic and momentum preserving and have excellent global
energy behavior for linear systems. The formulation of these algorithms is
based on the discretization of Hamilton’s principle rather than the equations
of motion directly, and this leads in a natural way to symplectic-momentum
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Figure 1: Long-time energy behaviors of different algorithms (Implicit New-
mark β = 1/4, γ = 1/2, Explicit Newmark β = 0, γ = 1/2)[11].

preserving integrators. Such integrators, however, can not in general preserve
the Hamiltonian exactly, though they usually have good energy performance
for linear systems, assuming small time steps.

As mentioned above, variational integrators are naturally symplectic and mo-
mentum preserving but usually can not preserve energy, which has been shown
theoretically in [7] and confirmed computationally in [1]. It should be em-
phasized that this only applies to integrators with constant timesteps. With
adaptive timesteps, a symplectic integrator can be adjusted to conserve energy
as well[10], for example, the SEM algorithm studied in this report. Loosely
speaking, the algorithm introduces a constraint that energy be preserved and
a new timestep is accordingly computed in every step to satisfy this constraint.
Because of its energy preserving property, this SEM integrator can be applied
to molecular dynamics simulations to handle the resonance issue mentioned
earlier. Numerical experiments will be shown to demonstrate that it can avoid
resonance at large time steps and produce more accurate trajectories in phase
space than an implicit midpoint method. However, it will also be shown to
be computationally more expensive because a nonlinear system needs to be
solved in every step. Some optimization techniques are used to systematize
this procedure, but a clear price must be paid.
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2 Brief Description of SEM Algorithm

2.1 Governing Equations

The SEM algorithm used in this report was developed by Kane, Marsden
and Ortiz[10]. This time-stepping algorithm approximates a flow of a system
of ODEs for a mechanical system by discretizing Hamilton’s principle rather
than the equations of motion. Thereby, a framework is easily developed to
conserve invariants of the motion.

For completeness, we start with the following quote from Arnold[2] to describe
the terminology commonly used in Lagrangian mechanics:

“L(q, q̇, t) = T − V is the Lagrange function or Lagrangian, qi are the gen-
eralized coordinates, q̇i are generalized velocities, ∂L/∂q̇i = pi are generalized
momenta, ∂L/∂qi are generalized forces.

∫ t1
t0

L(q, q̇, t)dt is the action.”

The equation

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 (3)

is the Euler-Lagrange equation for the functional

Φ =

∫ t1

t0

L(q, q̇, t)dt. (4)

Hamilton’s principle of least action states that [2]“motions of Lagrangian me-
chanical systems coincide with extremals of the functional Φ”. Furthermore,
“the curve γ is an extremal of the function Φ on the space of curves joining
(t0, q0) and (t1, q1), if and only if the Euler-Lagrange equation is satisfied along
γ.”

For our problems, the Lagrangian is of the standard form

L(q, q̇) =
1

2
q̇T Mq̇ − V (q) (5)

where M is a symmetric positive-definite matrix and V the system poten-
tial. The associated discrete Lagrangian is defined by a 2-point map over the
configuration space Q:

Ld : Q×Q→ R (6)
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where

Ld(qk, qk+1, hk) =
1

2

(
qk+1 − qk

hk

)T

M

(
qk+1 − qk

hk

)
− V

(
qk + qk+1

2

)
. (7)

Here qk denotes the position coordinates at time step k and hk > 0 is the
time step. Ld is regarded as a function of two nearby position coordinates(
qk, qk+1

)
. It is worth noting that the discrete Lagrangian can also have other

definitions. Our choice is not unique.

For a positive integer N , one can further define the action sum, a discrete
analog of the action integral, as

Sd =
N−1∑
k=0

hkLd

(
qk, qk+1, hk

)
(8)

The discrete variational principle states that the discrete evolution equations
extremize the action sum given fixed end points, q0 and qN . The resulting
discrete Euler-Lagrange (DEL) equations are as follows:

hkD1Ld

(
qk, qk+1, hk

)
+ hk−1D2Ld

(
qk−1, qk, hk−1

)
= 0 (9)

for all k = 1, ..., N − 1, This is the first governing equation of the SEM algo-
rithm, in which D1 denotes the derivative with respect to the first slot and D2

the derivative with respect to the second slot[11].

With the discrete energy defined as

Ed

(
qk−1, qk, hk−1

)
=

1

2

(
qk − qk−1

hk−1

)T

M

(
qk − qk−1

hk−1

)
+ V

(
qk−1 + qk

2

)
(10)

the second governing equation defining the algorithm is

Ed

(
qk−1, qk, hk−1

)
− Ed

(
qk, qk+1, hk

)
= 0 (11)

which imposes the constraint that total energy should be conserved from one
step to the next. By solving these two equations, one can pass from data(
qk−1, qk, hk−1

)
to

(
qk, qk+1, hk

)
.

As described in [10], the algorithm is symplectic, energy preserving and mo-
mentum preserving. The nonlinear system of equations can be solved by using
optimization techniques. More details will be presented in Section 5.
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3 Application to the H-Br System

3.1 Model and Discrete Equations

The first model system is the diatomic molecule, HBr, with the hydrogen and
bromine atoms interacting via the Morse potential [22]

Ep(r) = D (1− exp[−S(r − r0)])
2 , (12)

where r = |xH − xBr| represents the interatomic distance. xH and xBr denote
position of hydrogen and bromine atoms, respectively, and r0 is the equilib-
rium bond distance. D is the well depth, and S is a parameter controlling the
width of the well. The two molecules are assumed to move in one dimension
under the influence of the Morse potential.

The main discrete equations for the SEM algorithm are as follows:

hk−1

[
M

qk − qk−1

h2
k−1

− 1

2
E ′

p

(
qk−1 + qk

2

)]
+hk

[
−M

qk+1 − qk

h2
k

− 1

2
E ′

p

(
qk + qk+1

2

)]
= 0 (13)

1

2

(
qk − qk−1

hk−1

)T

M

(
qk − qk−1

hk−1

)
+ Ep

(
qk−1 + qk

2

)
−1

2

(
qk+1 − qk

hk

)T

M

(
qk+1 − qk

hk

)
− Ep

(
qk + qk+1

2

)
= 0 (14)

where q denotes the position vector and h the timestep.

With the parameters and initial conditions given in [1], we can solve this
nonlinear system of equations and plot the conjugate pair of position and
momentum for the Morse oscillator alone (r, p), where for a reduced mass µ

r = xH − xBr (15)

p = µ(vH − vBr). (16)

In addition, we can check the total energy of the system at each step.
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3.2 Numerical Results and Discussions

1. Energy Behavior . We can see from Fig. 2 and Fig. 3 that the total energy
is well conserved no matter what initial timestep is used and resonance is com-
pletely avoided. The horizontal solid line represents the initial input energy to
the system. Furthermore note that h = 4.02fs and h = 7.22fs are two step
sizes leading to resonance when the implicit midpoint method is used[1].

Figure 2: Energy vs. iteration number by SEM, h0 = 4fs.

Figure 3: Energy vs. iteration number by SEM, h0 = 7.22fs.

2. Trajectories . For this particular problem, exact trajectories are known
analytically. If the energy E is less than D, then integration gives [22]:
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Sx = log[1− cos θ cos(2πν0t sin θ)/ sin2 θ] (17)

where cos2 θ = E/D, ν0 = (S/2π)(2D/µ)
1
2 , and x is the stretch of the in-

teratomic bond. Thus the motion is periodic and may be described as the
logarithm of a simple harmonic motion. The exact trajectory in phase space
has an elliptical-like shape. Comparing Fig. 4 and Fig. 5 (by SEM) with Fig.
6 and Fig. 7 (by IM), we can see that SEM produces correct trajectories, while
the IM method has trouble for large timesteps.

Figure 4: Energy and trajectory by SEM, h0 = 4fs.

Figure 5: Energy and trajectory by SEM, h0 = 7.22fs.

3. Period . The energy-dependent angular frequency ωE is given by
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Figure 6: Energy and trajectory by IM, h = 4fs.

Figure 7: Energy and trajectory by IM, h = 7.22fs.

ωE = S

√
2(D − E)

µ
. (18)

As noted in [1], an Implicit Midpoint (IM) method affects the frequency of the
periodic motion of the system. The effective frequency, ωeff , becomes timestep
dependent:

ωeff
E =

2

h
tan−1(

1

2
ωEh) (19)

where h is the timestep. As h→ 0, ωeff
E → ωE, and as h→∞, ωeff

E → 0.
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Figure 8: Position vs. time, hav = 1.266fs.

Figure 9: Position vs. time, hav = 2.2173fs.

From Fig. 8 and Fig. 9 we can see that the SEM method has the same
effect on the period as IM, where the smooth solid lines represent the exact
solution. Note, if one fixes the timestep and uses only the discrete Euler-
Lagrange equation to propagate the motion, the equation can be rewritten
as:

V k+1 − V k−1

2h
= M−1 1

2

[
f

(
1

2
(qk + qk+1)

)
+ f

(
1

2
(qk−1 + qk)

)]
(20)

qk+1 − qk

h
=

1

2
(V k + V k+1) (21)
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Figure 10: Phase density from the SEM algorithm, hav = 16.3fs.

qk − qk−1

h
=

1

2
(V k−1 + V k). (22)

This is equivalent to an Implicit Midpoint method.

4. Phase Density . The SEM algorithm can produce different phase densities
than exact ones, see Fig.10 and 11. This can be explained as follows. When
tracing trajectories in phase space, the SEM method always uses the position
coordinates and velocities associated with the mid-points between two nearby
grid points, i.e. q = (qk + qk+1)/2, v = (qk+1 − qk)/hk. This leads to phase
density errors unless timesteps are quite small; see Fig. 12. If we instead use
position coordinates of each grid point then we would have trouble in evaluat-
ing the corresponding velocities because of nonuniform timesteps. Therefore,
one can expect different phase densities even though the numerical results are
actually satisfactory and a good trajectory has been obtained in phase space.
The computation of phase density has to be done carefully to ensure good
results.

5. Timestep History . From Fig. 13, we can see that timestep first increased
and then oscillates around an average value. Timestep history depends on the
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Figure 11: Phase density by exact solution, hav = 16.3fs.

Figure 12: Phase density error caused by the SEM algorithm.
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Figure 13: Timestep history of SEM, h0 = 4fs.

exact system and initial conditions.

6. Dependence on Optimization. The accuracy of the numerical results by the
SEM method strongly depends on the tolerance parameter specified in the op-
timization package because of the complex landscape of the objective function.
This will be described in section 6.

4 Application to a 22-atom System

4.1 Model Description[21]

The second model system is N−acetylalanyl−N
′−methylamide, see Fig.14.

Its chemical composition is given by CH3 − CO − NH − CHCH3 − CO −
NH − CH3. This 22-atom system contains representative characteristics of
polypeptides (such as main chain dihedral-angle motion) and is particularly
flexible, making it a good test case.

Compared with the HBr system, the calculation of forces and potential energy
for this system are much more complicated. Therefore, a commercially avail-
able molecular dynamics program, CHARMM (version c28b2)[4], is used and
the SEM algorithm is integrated into it. The total potential energy can be
expressed as
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Figure 14: Blocked alanine (‘dipeptide’) model[21].

E = Eb + Eθ + Eφ + Eω︸ ︷︷ ︸
internal potential

+ Evdw + Eel + Ehb︸ ︷︷ ︸
external potential

+ Ecr + Ecφ︸ ︷︷ ︸
constraints

(23)

In this equation, the first line represents internal potentials with Eb denot-
ing bond potentials, Eθ bond angle potentials, Eφ torsion potentials and Eω

improper torsions. The second line represents external potentials with Evdw

denoting van der Waals interactions, Eel electrostatic potentials and Ehb hy-
drogen bonding. The third line represents constraints with Ecr denoting atom
harmonics and Ecφ dihedral constraints. The mathematical expression for each
of these potential terms can be found in [4].

The initial positions are usually based on known X-ray structure ( followed
by energy minimization to relieve local strain due to non-bonded overlaps and
distortions). The initial velocities are typically assigned based on a Maxwellian
distribution at some relatively low temperature and then the system is slowly
heated to the desired simulation temperature. The actual dynamics simula-
tions then start from that point.

Additionally, CHARMM has its own Verlet time stepping algorithm and can
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be used for comparisons. Note that this problem has no exact solution, and
small step size (say, h = 0.5fs or h = 1fs) simulations of Verlet in CHARMM
were employed for pseudo accuracy checks.

The discrete equations have the same forms as (13) and (14). The only differ-
ence is that the potential and forces have no explicit expressions and have to be
computed by CHARMM in every step. As a consequence, the subsequent opti-
mization will be executed on an objective function without explicit expressions.

4.2 Numerical Results and Discussions

1. Potential Energy and Total Energy . Since the exact solutions for trajecto-
ries are not available, we use CHARMM (Verlet) with a small stepsize to study
the properties of the SEM method.

Figure 15: Potential energy history by Verlet and SEM.

It can be seen from Fig.15 that the SEM method is accurate when a small
average timestep is used. The potential energy history is consistent with that
computed by CHARMM. When the timestep increases, we observed some dis-
crepancy in the potential energy (up to 10 percent in terms of relative errors).
This, however, may result from different ways in which energy and velocities
are computed.

Verlet:

V n =
qn+1 − qn−1

2hn

(24)
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Ep = Ep(qn) (25)

SEM:

V n =
qn+1 − qn

hn

(26)

Ep = Ep

(
qn+1 + qn

2

)
(27)

It should be noted that when the average timestep is very small this does not
make much difference.

The consistency of potential energy history implies that the computed trajec-
tories are reliable though it is not a very strict test. It can also be seen from
Fig.16 that total energy is preserved and no instability occurs.

Figure 16: Total energy history by SEM with a timestep history as shown in
Fig.17.

2. Timestep History . Fig.17 shows the timestep history. Again, the history
depends on initial conditions. Fig. 18 shows a different sequence of timesteps
caused by different initial conditions.

5 Optimization Techniques

The performance of the algorithm depends highly on how well we can solve the
two governing discrete equations which are typically nonlinear. The technique
used is the following optimization technique. Given h0, q0, q1 we have to find
h1, q2 which are determined by the DEL equations
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Figure 17: Timestep history of SEM (ps).

Figure 18: Timestep history of SEM (ps).

g (q0, q1, q2, h0, h1) := h0D2L (q0, q1, h0) + h1D1L (q1, q2, h1) = 0 (28)

and the energy condition

f (q0, q1, q2, h0, h1) := E (q1, q2, h1)− E (q0, q1, h0) = 0. (29)

The technique is to minimize the quantity[10]

Ψ = [f (q0, q1, q2, h0, h1)]
2 + [g (q0, q1, q2, h0, h1)]

2 (30)

with respect to the variables h1, q2, with the other variables given, and subject
to the constraint h1 > 0. This is a non-convex optimization problem with a
unilateral constraint.
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For the objective function associated with this problem, many schemes such as
Nelder-Mead Simplex, Truncated-Newton, Quasi-Newton, Genetic Algorithm
and Stochastic global optimization were tried. This section will briefly sum-
marize these methods within the context of the problem at hand.

Figure 19: Energy vs. iteration number by SEM, h0 = 4fs, TOL = 1e− 8.

The Nelder-Mead Simplex method[15][5] was successfully employed to deal
with the HBr system. The Matlab optimization toolbox function ’fminsearch’
was used to search for the local minimizer of the objective function. A typical
TOL parameter used was 1e-18. A larger TOL parameter such as 1e-8 can
generate a bad energy history; see Fig. 19. However, the simplex method is
not applicable to the 22-atom system, because without gradient information it
becomes very time-consuming when the objective function has more variables.
A simple test that one can try uses the extended rosenbrock function (’banana
function’) which is a part of the standard test suite for function ’fminsearch’
in MATLAB

F (X) =
∑

j=1,3,5,...,n−1

(1− xj)
2 + 100(xj+1 − x2

j)
2. (31)

The Nelder-Mead Simplex method shows an extremely low efficiency when n
has a large value.

Truncated-Newton and Quasi-Newton methods demonstrate higher efficiency
for minimizing multivariate functions. The main difference between these two
is that the former allows a nonzero residual vector rk = Hkp + gk in the
solution for pk, where H and g denote the Hessian matrix and the gradient
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vector, respectively, and p the search direction, while the latter approximates
the Hessian H when it is difficult to obtain. A Truncated-Newton method
leads to a doubly-nested iteration structure: for every outer Newton iteration
k (associated with Xk, the vector of unknowns), there corresponds an inner
loop (for pk). For a Quasi-Newton method, the search direction is obtained by

pk = −Dkgk (32)

where Dk is a positive definite matrix approaching the inverse Hessian, which
may be adjusted from one iteration to the next so that the direction pk tends to
approximate the Newton direction. In the most popular class of Quasi-Newton
methods, the matrix Dk+1 is obtained from Dk, and the vector Xk+1 −Xk

and gk+1 − gk. Different ways to build curvature information into the matrix
Dk lead to different methods. The BFGS method is one such method.

TNPACK is a Fortran package for unconstrained optimization which imple-
ments a Truncated-Newton algorithm [19, 20]. This package was applied to
minimize the objective function associated with the IM method, HBr system
[1], which is nearly quadratic for small timesteps. For the SEM algorithm, L-
BFGS-B [24], another package which implements a Quasi-Newton algorithm,
is a better choice because this package does constrained optimization such
that we can enforce the constraint h > 0 conveniently and furthermore, the
objective function associated with the SEM algorithm is highly nonlinear. It
was applied on the HBr system and the same results were obtained as from
the Simplex method. A sample output by L-BFGS-B is shown in Appendix 1,
where it can be seen that the optimized function value is 10 orders of magni-
tude less than the initial function value (6.277e-13 versus 7.641e-3); See Fig.20
for the objective function history. Both of these packages incorporate a line
search algorithm [16] which guarantees a global convergence to the closest lo-
cal minimizer. This step-length procedure, based on safeguarded cubic and
quadratic interpolation, is used to search for λ that satisfies both the sufficient
decrease condition

F (Xk + λpk) ≤ F (Xk) + FtolλgT
k pk (33)

and the condition regarding sufficient reduction in the magnitude of the direc-
tional derivative at Xk+1 = Xk + λpk:

|gT
k+1pk| ≤ Gtol|gT

k pk|. (34)
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Figure 20: Objective function value history by L-BFGS-B.

In principle, we should look for the global minimizer of the objective func-
tion associated with the SEM algorithm. In practice, for the HBr system the
closest local minimizer is satisfactory since it makes the function value small
enough. However, this is not the case for the 22-atom system where the global
minimizer is needed. A Genetic Algorithm is a possible choice for global opti-
mization since it is a derivative-free method[8, 25, 26], but it does not work as
well as expected. The main difficulty lies in the fact that the objective func-
tion is highly non-convex and has many ’deep valleys’. As a result, extremely
narrow bounds have to be specified, otherwise the resulting global minimizer
always returns to the starting point and the true solution is missed. More-
over, the bounds initially set for a Genetic algorithm impose a strict limit to
the searching space. However, in numerical applications one may need to go
slightly beyond this limit and accept a better solution though it falls outside
the range. In this problem, for instance, it is not easy to initially choose an
appropriate compact set for the search space as is required by these algorithms.

As an alternate derivative-free method, a stochastic method for global opti-
mization is used instead [3]. The main advantage of this algorithm is that it
incorporates a local search for local minima and provides a global minimum
thereafter. Furthermore, the given limits are not treated as strict limits in the
Fortran package implementing the algorithm[6]. The local search may step
outside the search range. This is a nice feature and makes it more reliable
than a Genetic algorithm for this particular problem. Its application is suc-
cessful and the objective function value typically goes down from the order of
1e-1 to 1e-17 after iteration completes, while a Genetic algorithm only makes
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it down to 1e-3. A sample output of a global optimization can be found in
Appendix 2, which tabulates the optimized function values followed by the
minimizers (37 variables in this example).

6 Conclusions

The SEM algorithm examined is a symplectic, momentum preserving and en-
ergy preserving variational integrator. It can be looked at as the implicit
midpoint method combined with a constraint that energy be conserved from
step to step. As a result, it has adaptive timesteps and can be expected to
increase molecular dynamics simulation times to some extent. Furthermore, it
can preserve energy and avoid resonance induced by constant timestep algo-
rithms which are currently used. For a HBr system, we can see that it produces
accurate trajectories by comparing with the exact ones in phase space. These
are the main advantages over other algorithms. Its disadvantage lies in the fact
that it is computationally more expensive, because it needs to solve a more
complicated nonlinear system of equations, especially for large scale problems.

Optimization techniques are used to solve the nonlinear system mentioned
above. Different algorithms (Simplex, Truncated-Newton, Quasi-Newton, Ge-
netic algorithm, Stochastic global optimization) were tried and satisfactory
results can be achieved. For local minimization, Quasi-Newton and Truncated-
Newton methods are more efficient than the Simplex method if the gradient can
be evaluated well. For global minimization, the stochastic method mentioned
in the report shows much higher efficiency than a generic algorithm because it
makes use of gradient information and incorporates a local search. Moreover,
for the SEM algorithm, local optimization techniques suffice for small system,
but large systems require global optimization.
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Appendix 1

====================================================================

sample output of BFGS code (1 iteration) (HBr model, SEM algorithm):

====================================================================

RUNNING THE L-BFGS-B CODE

it = iteration number

nf = number of function evaluations

nint = number of segments explored during the Cauchy search

nact = number of active bounds at the generalized Cauchy point

sub = manner in which the subspace minimization terminated:

con = converged, bnd = a bound was reached

itls = number of iterations performed in the line search

stepl = step length used

tstep = norm of the displacement (total step)

projg = norm of the projected gradient

f = function value

Machine precision = 2.220E-16

N = 3 M = 5

it nf nint nact sub itls stepl tstep projg f

0 1 - - - - - - 3.034E+00 7.641E-03

1 3 1 0 --- 1 1.3E-03 3.8E-03 3.161E-02 1.880E-03

2 4 1 0 con 0 1.0E+00 4.2E-05 3.167E-02 1.878E-03

3 5 1 0 con 0 1.0E+00 6.1E-04 8.380E-02 1.864E-03

4 6 1 0 con 0 1.0E+00 1.4E-03 1.783E-01 1.836E-03

5 7 1 0 con 0 1.0E+00 4.4E-03 3.479E-01 1.757E-03

6 8 1 0 con 0 1.0E+00 1.1E-02 5.748E-01 1.574E-03

7 9 1 0 con 0 1.0E+00 2.5E-02 8.235E-01 1.175E-03

8 10 1 0 con 0 1.0E+00 4.3E-02 8.429E-01 5.509E-04

9 12 1 0 con 1 5.2E-02 3.5E-03 1.907E-02 8.257E-05

10 13 1 0 con 0 1.0E+00 2.7E-02 5.974E-03 3.629E-06

11 14 1 0 con 0 1.0E+00 4.8E-03 1.078E-03 6.390E-09

12 15 1 0 con 0 1.0E+00 1.8E-04 7.393E-06 1.151E-12

13 16 1 0 con 0 1.0E+00 1.7E-06 1.805E-09 6.277E-13

14 17 1 0 con 0 1.0E+00 7.7E-10 3.549E-10 6.277E-13

15 18 1 0 con 0 1.0E+00 4.0E-11 2.790E-09 6.277E-13

CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH
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Appendix 2

=========================================================================

sample output of GLOBAL Minimization code (22-atom model, SEM algorithm):

=========================================================================

5000 FUNCTION EVALUATIONS USED FOR SAMPLING

*** THE LOCAL MINIMUM NO. 1: 0.61483705E-17, NFEV= 5839

0.61483705E-17

-36.875850 -28.091865 80.294103 -36.152512 -27.287214

79.217775 -35.473275 -26.251896 79.502513 -36.166213

-27.792084 78.027079 -36.573597 -28.645941 77.763815

-35.665203 -27.123762 76.783571 -34.308545 -27.620819

76.301469 -36.627671 -27.162202 75.613049 -37.387373

-28.140131 75.435148 -36.818639 -26.086403 74.867283

-36.623818 -25.141862 75.092929 -37.557768 -26.205655

73.629116 0.41925717E-02

NEW SEED POINT ADDED TO THE CLUSTER NO. 1, NFEV= 4732

0.78162246E-16

-36.913577 -28.090029 80.266953 -36.157653 -27.294592

79.186917 -35.455510 -26.235450 79.503109 -36.137937

-27.819550 78.013376 -36.619895 -28.637995 77.868729

-35.687544 -27.154299 76.751197 -34.314566 -27.627738

76.298890 -36.608112 -27.156941 75.579505 -37.376426

-28.156712 75.438381 -36.858471 -26.085053 74.885161

-36.553829 -25.185238 75.053539 -37.547058 -26.169085

73.599399 0.49375820E-02

... ... ... ... ...

... ... ... ... ...

LOCAL MINIMA FOUND:

0.61483705E-17

-36.875850 -28.091865 80.294103 -36.152512 -27.287214

79.217775 -35.473275 -26.251896 79.502513 -36.166213

-27.792084 78.027079 -36.573597 -28.645941 77.763815

-35.665203 -27.123762 76.783571 -34.308545 -27.620819

76.301469 -36.627671 -27.162202 75.613049 -37.387373

-28.140131 75.435148 -36.818639 -26.086403 74.867283

-36.623818 -25.141862 75.092929 -37.557768 -26.205655

73.629116 0.41925717E-02
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