
Report No. Structural Engineering,

UCB/SEMM-2003/06 Mechanics and Materials

1-D Diffusion Deformation Phenomena:

Accuracy Analysis of Operator Splitting

By

Prashanth K. Vijalapura

and

Sanjay Govindjee

October 2003 Department of Civil and Environmental Engineering

University of California, Berkeley



1-D Diffusion Deformation Phenomena: Accuracy

Analysis of Operator Splitting

P. K. Vijalapura, S. Govindjee

October 7, 2003

SUMMARY

This report provides the details of analysis of orders of accuracy of
operator splitting time stepping schemes, applied to coupled problems.
The phenomenon considered is solvent diffusion in a deforming poly-
mer, where diffusion and deformation are coupled. Operator splitting
is applied to a set of Differential Algebraic Equations (DAEs) arising
from spatial discretization of the equations governing the coupled phe-
nomenon. Although, solvent concentration and polymer deformation
are natural choices of the fields held fixed, respectively, in the two
phases of the split, complications arise when a formulation in terms
of solvent activity instead of concentration is chosen. In this paper,
analysis of order of accuracy of “adiabatic splitting”, a particular op-
erator splitting scheme, with activity and polymer deformation as the
primary variables, is presented. It is shown that adiabatic splitting
is globally first order accurate on DAEs in the present case, where
activity and polymer deformation are the primary variables.

KEYWORDS: Operator Splitting; Fractional step methods; Differential-Algebraic-Equations;
Error Order; Nonlinear Coupled Problem, Diffusion-deformation Coupling.

1 Introduction

Adiabatic splitting, a particular operator splitting technique, is applied in
the context of thermo-elasto-plasticity (see e.g., Armero and Simo [1992],
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Armero and Simo [1993]). In these references, accuracy analysis of the
dynamic case, which leads to a set of ordinary differential equations (on spa-
tial discretization) is presented. However, our coupled governing equations
for the diffusion-deformation phenomenon, although similar to the thermo-
elasto-plasticity case, are different in that they correspond to the quasi-static
case. Spatial discretization of the coupled equations for the quasistatic case
leads to DAEs instead of ODEs. Results of order analysis of operator splits
for generic DAEs are presented in Vijalapura and Govindjee [2003a].
These results can be utilized directly when solvent concentration and poly-
mer deformation are used as primary variables, with the polymer deforming
elastically. However, details of the order analysis when the governing equa-
tions are formulated in terms of solvent activity and polymer deformation is
not obvious. This report provides the details of such an analysis. The im-
portant case of viscoelastic polymer deformation (the elastic case being the
special case) coupled to diffusion is also included. In the following sections,
governing equations for the diffusion-deformation phenomenon, their spatial
discretization, and order analysis of operator splitting on the resulting DAEs,
are presented.

2 Governing Equations

The balance laws and a specific set of constitutive relations defining our
diffusion-deformation model in 1-D are summarized in this section. Addi-
tional discussion of the model equations can be found in Vijalapura and

Govindjee [2003b].

Solvent Mass Balance:

dM

dt
= −df(φ, M)

dX
X ∈ Ω = (0, L). (1)

Here, M is the solvent concentration (solvent mass per unit undeformed
polymer length), φ denotes the polymer deformation, f is the solvent flux
and t and X denote the time and position variables. The polymer occupies
a reference configuration Ω.
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Mixture Stress Equilibrium:

dσ(φ, M)

dX
= 0. (2)

Here, σ denotes the mixture stress and Eqn. (2) corresponds to the quasi-
static case where inertial effects are neglected. The stress depends on φ
through the stretch λ = ∂φ/∂X. These balance laws are supplemented by
appropriate boundary conditions.

σ n = σ̄ X ∈ ∂σΩ; φ = φ̄ X ∈ ∂φΩ (3)

M = M̄ (or A = Ā) X ∈ ∂MΩ; f n = f̄ X ∈ ∂fΩ. (4)

For the deformation problem, the boundary conditions are in terms of speci-
fied deformations φ̄ or tractions σ̄, while for the diffusion problem, fluxes f̄ or
concentrations M̄ can be specified. An additional important mixed bound-
ary condition in terms of activity A which is a function of φ and M can also
be specified for the diffusion problem.
The constitutive relations for the flux f , mixture stress σ, and the chemical
potential µ complete the balance laws for the diffusion-deformation problem.
For the mixture stress, we assume,

σ︸︷︷︸
Total

= σs(M, λ)︸ ︷︷ ︸
Solvent

+ σ∞p (λ)︸ ︷︷ ︸
Elastic

+ q︸︷︷︸
V iscous

, (5)

where, σs is a contribution due to solvent presence which induces swelling,
σ∞p is the elastic contribution, and q is the viscoelastic contribution from the
polymer skeleton. The purely elastic case corresponds to setting q = 0. The
functional forms for σs, σ

∞
p are given by,

σs = Es ln

[
bh(λ)

h(λ)−M

]
,

σ∞p =
1

2
E∞(λ− 1)

[
1 +

f0

(1− f0)h(λ)

]
. (6)

Further, the viscoelastic over stress is assumed to be given by a first order
evolution law with a concentration dependent relaxation time τ .

dq

dt
+

q

τ(M, λ)
= β

d

dt
[σ∞p ]. (7)
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In Eqns. (6) and (7), the moduli Es, E
∞, and the parameters f0, b are con-

stants. Further, h is a linear function of the stretch λ. In the above relations
specifying the stress, the coupling where diffusion affects deformation is in-
troduced through σs and τ .
For the diffusion problem, the flux law is specified by,

f = −B(m)
M

λ2

dµ

dX
, (8)

where, B is a mobility coefficient depending nonlinearly on the spatial con-
centration, m = M/λ, and µ is the chemical potential of the solvent in the
mixture. The chemical potential is constitutively specified as:

µ

RT
= ln(bM)− ln(h(λ)−M) := logA. (9)

Here, T denotes absolute temperature which is fixed assuming isothermal
conditions, and R is the universal gas constant. Equation (9) for µ also
defines activity A. In specifying the flux law, the coupling where deformation
affects diffusion is introduced strongly through the chemical potential and
mildly through the mobility coefficient. Functional forms of the remaining
quantities are summarized in the Table 1.

Table 1: Choice of functions for mobility coefficient,the relaxation time, and
the current free volume

Functional Form Parameters

Diffusion Coefficient B B(m(M, λ)) = B0(1 + ξ(M/λ)2)/RT B0, ξ

Relaxation Time τ τ(m(M, λ)) = τ0g(M, λ) τ0

Relaxation Time Function g g(M, λ) = exp(Bd(f̂ − f0)/(f0f̂)) Bd

Current Free Volume f̂ f̂(M, λ) = f0 + aηM/λ aη

Remark 1
Spatial discretization of the solvent mass balance (1) results in a first order
system of ODEs in variables defining the discretized concentration field. On
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the other hand, spatial discretization of mixture stress equilibrium (2) results
in algebraic constraints between deformation and concentration variables.
This immediately leads to the canonical setting given in (Vijalapura and

Govindjee [2003a], section 2.2). If one wishes to use activity as the primary
variable instead of concentration, additional issues must be addressed. As
this is an important practical issue, the details of using activity as a primary
variable are considered in section 3. �

3 Activity and Deformation Formulation

3.1 Spatial Discretization

Spatial discretization is performed using standard C0 finite elements (see
e.g., Hughes [2000]) for the spatial fields. The displacement field u defined
as u = φ(X) − X is interpolated linearly in terms of nodal variables U.
Similarly, either the concentration M or activity A can be linearly interpo-
lated in terms of their nodal values. When concentration Dirichlet boundary
conditions are specified, the field M is interpolated. When activity Dirichlet
boundary conditions are specified, the activity field A is interpolated. Activ-
ity interpolations are natural for imposing activity conditions. Furthermore,
they avoid the need for computing the spatial derivative of stretch λ that ap-
pears through the spatial derivative of the chemical potential µ in the mass
balance equations. In the following, activity interpolation is considered in
terms of nodal activities A along with activity boundary conditions.
The Galerkin finite element method can be stated as: Find the C0 fields, u
and A (or equivalently, U and A) satisfying (10)and (11) for all admissible
variations δu and δA.
Mass Balance:

GA(A, u; δA) =

∫ 1

0

dM(A, λ)

dt
δA dX

+

∫ 1

0

B(M(A, λ), λ)
1

A

dA

dX

d(δA)

dX
dX − f̄ δA |∂fΩ= 0.

(10)

Here, the admissible activity variations satisfy δA = 0 on ∂AΩ.
Momentum Balance:

Gu(A, u; δu) =

∫ 1

0

σ(A, λ)
d(δu)

dX
dX − σ̄δu |∂σΩ= 0. (11)
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The stretch λ is calculated from the interpolation field u which is obtained
from the nodal values U. The admissible displacement variations satisfy
δu = 0 on ∂uΩ.
Since, the weak forms (10) and (11) hold for all admissible variations δA
and δu, one can write the following sets of DAEs, indicated in terms of their
functional dependencies.

Mass Balance:
dM(A,U)

dt
+ R(A,U) = f , (12a)

Momentum Balance: S(A,U,q)− s = 0. (12b)

The various matrices are given by,

M(A,U) =

nel

A
e=1

m̄
(e)
[2×1] : m̄

(e)
(A,1) =

∫
Le

NAM(A,U)dX, (13)

R(A,U) =

nel

A
e=1

r
(e)
[2×1] : r

(e)
(A,1) =

∫
Le

dNA

dX

B(A,U)

A

dA

dX
dX, (14)

S(A,U,q) =

nel

A
e=1

s
(e)
[2×1] : s

(e)
(A,1) =

∫
Le

dNA

dX
σ(U,A,q) dX. (15)

In Eqn. (12b), the explicit dependence of the residual on the viscoelastic
overstress q is shown. In an actual implementation, the various integrals are
computed using numerical quadrature and viscoelastic stresses need only be
computed at the quadrature points. Their evolution at the quadrature points
is given by (7) resulting in a system of ODEs, and their values at quadrature
points can be stacked into one vector q. Thus, in the viscoelastic case, the
evolution of the viscoelastic stresses together with the spatially discrete mass
balance equations, form a system of ODEs. These ODEs together with the
algebraic constraints due to mixture equilibrium (Eq. (12b)), give rise to
DAEs which can be put in the canonical form, presented in Vijalapura

and Govindjee [2003a].
In this reference, it is also shown that both one and two pass algorithms are
only globally first order accurate. Therefore, only one pass algorithms are
considered and the system of ODEs are discretized using Backward Euler
which also renders first order global accuracy.
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3.2 Implementation of the Monolithic Algorithm

The monolithic scheme for time stepping from tn to tn+1 can be summarized
as solving for qn+1, An+1 and Un+1 given their values at tn.

Mass Balance:

M(An+1,Un+1)−M(An,Un)

∆t
= −R(An+1,Un+1) + fn+1, (16a)

Momentum Balance:

S(An+1,Un+1,qn+1)− sn+1 = 0, (16b)

Viscoelastic Evolution:

q
(i)
n+1 − q

(i)
n

∆t
+

q
(i)
n+1

τ(Mn+1, λn+1)
= β

σ∞p |tn+1 −σ∞p |tn
∆t

. (16c)

It is important to observe that the unknown nodal activities and displace-
ments form the driving variables. In Eqn. (16c), the index i runs from 1 to
the number of quadrature points. The implementation details are straight
forward and the reader may wish to consult Vijalapura and Govindjee

[2003b] for further details on the monolithic scheme in the context of a second
order Backward Differentiation Formula (BDF2).

3.3 Implementation of the Splitting Algorithm

The splitting algorithm presented here constitutes the so-called adiabatic
split (see Armero and Simo [1992] for its implementation in the context
of thermomechanical problems). For future reference, this algorithm will be
labeled ALGO1. A stability analysis is also provided in this reference. How-
ever, analysis of global orders of accuracy is missing for the quasistatic case.
The various implementation steps are summarized below. A derivation on
the global orders of convergence is provided later. The splitting involves two
evolution operators, one for deformation and one for solvent concentration.

Deformation Phase: (Ṁ = 0)

1. Given Un and An at time tn, calculate the concentration field Mn from
(9). Since the stretch λ is only piecewise continuous, so is Mn.

2. Solve for Un+1 from mixture stress equilibrium (16b) by holding Mn

fixed pointwise in the interior of each element. In particular, Mn is
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held fixed while calculating the contribution from solvent stress σs and
viscoelastic stress q from the element interiors. Fixing Mn is a special
case of fixing Mn (i.e., Ṁ = 0), a fact that is used in the analysis later.

3. The visco-elastic stresses are evolved in this phase, with Mn fixed.

Remark 2
Since in the spatially continuous case, activity A depends both on M and
λ, keeping M fixed and evolving λ also evolves the activity field. However,
in the spatially discrete setting, this evolved, intermediate activity field need
not be C0 nor explicitly calculated. �

Diffusion Phase: (U̇ = 0)

1. The displacement Un+1 is frozen (U̇ = 0). Nodal activity An+1 is
obtained by solving (16a), using M̃n+1 = Mn as the needed initial con-

dition for time stepping. Here, (̃·), denotes an intermediate quantity
after the first of the two fractional steps. It is important to note that the
activity at the end of the deformation phase is never needed. Further-
more, the viscoelastic stresses are frozen in this phase; see Remark 9.
�

3.4 Order of Accuracy

Because of the unusual details of an adiabatic split, one needs to re-examine
the issue of accuracy and convergence. To aid in this analysis, we first start
with the derivation of an abstract result, independent of split algorithms.
Lemma 1: Given an index 1 DAE0

Ẏ

 =

G(X,Y)

F(X,Y)

 (17)

(i.e., G(X, Y) = 0 =⇒ X = H(Y)) that satisfies a Lipschitz condition
‖DYF(H(Y), Y)‖ < L, the one-step algorithm

Yn+1 −Yn

∆t
= F(H(Yn) + en∆t, Yn+1) (18)

converges globally to the exact solution of (17) to first order in ∆t.
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Proof:
The proof involves two parts. In the first part, we prove consistency. Writing
(18) as an algorithm that renders Y at tn+1 as a function of ∆t starting from
the exact initial condition Y(tn).

Yn+1(∆t) = Y(tn) + ∆tF(H(Y(tn)) + en∆t, Yn+1). (19)

Assuming smoothness of the numerical solution Yn+1 as a function of ∆t,
and expanding

Yn+1(∆t) = Yn+1(0) + ∆tẎn+1(0) +
∆t2

2!
Ÿn+1(0) + h.o.t

= Y(tn) + ∆tF(H(Y(tn)), Y(tn))

+ ∆t2(D1Fen + D2FẎn+1(0)) + h.o.t. (20)

The exact solution at tn+1 satisfies the expansion

Y(tn+1) = Y(tn) + ∆tẎ(tn) +
∆t2

2!
Ÿ(tn) + h.o.t

= Yn+1(0) + ∆tF(H(Y(tn)), Y(tn))

+
∆t2

2
(D1FẊ + D2FẎ(0)) + h.o.t. (21)

Comparing the Taylor series expansion of the exact solution and the numer-
ical scheme for the DAE, we conclude that

‖Y(tn+1)−Yn+1‖ = O(∆t2). (22)

The second part of the proof involves exploiting this intermediate result to
bound the global error in a standard fashion for stability. In particular,
defining En+1 = ‖Y(tn+1) − Yn+1‖, one obtains a recursive relation of the
form

En+1 ≤
1 + ∆tL

1−∆tL
En + δn, (23)

where δn is a term of order O(∆t2) and L is the Lipschitz constant. Solving
the recursion relation, one obtains

En+1 ≤ (1 + α)nE0 + δ
(1− (1 + α)n)

α
(24)

where, δn ≤ δ, ∀n; and α = 2∆tL/(1−∆tL).
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Under the limits, n→∞, ∆t→ 0 and n∆t = T , it can be inferred that

En+1 ≤ exp(nα)E0 + C∆t
1− exp(nα)

2L
(25)

for some constant C. In the limit n→∞, one finally obtains,

En+1 ≤ exp(2LT )E0 + C∆t
1− exp(2LT )

2L
(26)

which proves the stability of the method.

Remark 3
The conclusions of the above lemma remain true if a higher order (O(∆t2)
or more) perturbation is added to the en∆t term. �

Remark 4
The split algorithm, χ2,∆t ◦χ1,∆t, together with a Backward Euler discretiza-
tion, exactly corresponds to the timestepping shown in (18) with en = 0, thus
proving global first order accuracy. �

Remark 5
The fully implicit algorithm, namely,

G(Xn+1, Yn+1) = 0

Yn+1 −Yn

∆t
= F(Xn+1, Yn+1) (27)

is also globally first order accurate, from the following observation. Equations
(27) can be rewritten for Yn+1 as,

Yn+1 −Yn

∆t
= F(H(Yn+1), Yn+1) (28)

and H(Yn+1) is at worst an O(∆t) perturbation of H(Yn) and the lemma
above proves first order convergence. The convergence for the fully implicit
one step method can also be proved as a special case of a class of Runge-Kutta
methods for DAEs (see e.g., Hairer and Wanner [1993]). �
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3.5 Order of Accuracy for the Adiabatic Split: Elastic Case

The goal of this section is to prove that the adiabatic split proposed for the
spatially discrete equations, is also globally first order accurate. The adi-
abatic split is implemented with nodal activity A and nodal displacement
U as the primary variables, while concentration and displacement variables
are fixed in each of the phases. In particular, during the mechanical phase,
the concentration is fixed point-wise in the interior of the elements, while
in the diffusion phase, discrete concentration variables defined below are
evolved. Fixing the concentration point-wise in the interior of the elements
in the mechanical phase, fixes the discrete weighted-average concentrations.
However, displacement evolution in this phase with fixed point-wise concen-
trations does not lead to the evolution of a C0 activity field defined through
its nodal values. As discussed before, this difficulty is overcome by resorting
to sequencing the split phases so that the mechanical phase is ahead of the
diffusion phase. In addition a one step, one stage method needs to be used
to time-step the diffusion problem. Given the special nature of the split, we
note that it is indeed first order convergent. The proof is as follows.
Define the vector of nodal concentrations as:

M =



∫
ΩeM(A,U)N1dΩ

◦

◦

◦∫
ΩeM(A,U)NnendΩ


(29)

Further, M corresponds to the nodes where A is defined and it is easy to
verify that given U, M = M(A) is invertible.
From the above observations, although A, and U are the unknown primary
variables, and the activity variables A evolves in both phases of the split,
first order convergence can be proved for M and U. The proof involves using
an auxiliary but formally equivalent splitting algorithm. It is emphasized
that the auxiliary splitting algorithm is only used as a formality to effect the
proof and not for the implementation.
Consider the following algorithm labeled as ALGO2:
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1. Given Un and An at time tn.

2. Calculate Mn from (29) given An and Un.

3. Mechanical Phase: Find Ũ by solving (where (̃·) denotes an inter-
mediate solution)

G(U, Ã(U, Mn)) = 0. (30)

Equation (30) is consistent with Ṁ = 0 (M = Mn), and also defines an
intermediate activity field in terms of the nodal unknowns Ã(Ũ,Mn).

4. Diffusion Phase: Fixing U, evolve M by solving

Ṁ = F(U,M(U,A)). (31)

The initial condition is either M̃ = M̃(U, Ã) or Mn = Mn(Un,An),
since they are the same. Evolving M in (31), also equivalently implies
evolving A (with initial conditions Ã), for fixed U = Ũ.

5. The variables at time tn+1 are obtained as

Un+1 = U (32a)

An+1 = A (32b)

Mn+1 = M(Un+1,An+1). (32c)

Remark 6
From this algorithm, it is clear that although the activity variables evolve in
both phases of the splitting algorithm, viewing the algorithm in the variables
M and U, reduces it to the standard form assumed in Section 2, earlier.
This simply implies first order convergence for this algorithm. In practice,
for evolving the diffusion phase in (31), a one step first order method like
explicit or implicit Euler discretization is used. �

The actual implementation of the adiabatic split (labeled earlier as ALGO1),
is different from the algorithm, just described. The differences and their
implications are discussed below to prove global convergence for ALGO1 as
well.
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The piecewise continuous concentration field M(A,U) used in the definition
of M, is held fixed during the mechanical phase. This is equivalent to fixing
M during the mechanical phase. The nodal unknowns U are found by solving

G(U, Ã(U, Mn)) = 0. (33)

In general, solving for U in (33) need not imply the existence of a C0 activity
field by interpolating nodal activities Ã, such that M(An,Un) = M(Ã,U).
This brings in difficulty in terms of writing the implementation of the adia-
batic split in the standard form for proving convergence. However, we prove
pieces that help us take recourse to Lemma 1 for proving convergence.
We relabel the final displacements in ALGO2 and ALGO1 during the me-
chanical phase as U2 and U1, respectively. Correspondingly,

G(U2, Ã(U2, Mn)) = 0

G(U1, Ã(Un, Mn)) = 0

(34)

implying

U2 = Φ(U2,Mn), and U1 = Φ(Un,Mn). (35)

Expanding,

U2 = Φ(Un,Mn)︸ ︷︷ ︸
U1

+ D1Φ.(U2 −Un) + h.o.t. (36)

Using ‖U2 − Un‖ = O(∆t), one obtains ‖U2 − U1‖ = O(∆t). Using the
triangle inequality, one obtains ‖U1 −Un‖ ≤ ‖U2 −U1‖+ ‖U2 −Un‖ also
to be O(∆t). In other words, asymptotically, one can write the evolution of
the diffusion phase as

Ṁ = F(Un + en∆t,M). (37)

Discretizing, (37) using backward Euler, we are in the situation hypothesized
by Lemma 1, thereby proving first order global convergence.

Remark 7
Since the primary variables are activity and displacements, the splitting er-
rors in activity and displacements with respect to the monolithic solution in
a time step are only O(∆t), although the split solution itself is also globally
first order accurate. �
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Remark 8
In the viscoelastic case, an additional system of ODEs due to the evolution of
the viscoelastic stress at the quadrature points are included. In the deforma-
tion phase of the split, one can choose q̇(i) = 0 along with Ṁ = 0, i.e., all the
ODE variables are frozen. In the diffusion phase, q(i) evolves with evolving
M and frozen u. This is one of a multitude of possible splitting choices and
one that generates the canonical DAE form.
The actual implementation of the adiabatic split, however involves the op-
posite of this, namely, q(i) is frozen in the diffusion phase while it is evolved
in the deformation phase, when the field M is frozen. This procedure can be
justified as follows. In the deformation phase,

Momentum Balance: S(A(Mn,Un+1),Un+1,qn+1)− sn+1 = 0, (38)

Viscoelastic Evolution:
q

(i)
n+1 − q

(i)
n

∆t
+

q
(i)
n+1

τ(Mn, λn+1)
= β

σ∞p |tn+1 −σ∞p |tn
∆t

.

(39)

Due to the index 1 assumption, U can be expressed in terms of q and Mn,
via the implicit function theorem. Consequently, λn+1 = λn+1(M,qn+1). As
a result, Eqn. (39) takes the form

q
(i)
n+1 − q

(i)
n

∆t
= ψ(i)(qn+1,Mn), (40)

for a suitably defined function ψ. Thus after eliminating U, we have a system
of ODEs of the form:

q̇(i) = ψ(i)(q,M) (41)

Ṁ = F(U,M). (42)

We can apply an operator split on this system of ODEs, freezing the vis-
coelastic stresses and concentrations in each of the two phases, respectively.
It can be verified that ALGO1 for the visco- elastic case exactly corresponds
to this split thereby proving global first order convergence. �

Remark 9
In the 1-D case, both the algorithms mentioned under the Viscoelastic case,
render symmetric tangent stiffness for the mechanical problem. However, in
higher dimensions, only the former algorithm would provide symmetry while
the latter would not. �
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