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ABSTRACT

A model and its computational realization for the simulation of solid-solid phase transformations
of the type observed in shape memory alloys is presented. The model includes both mechanically
and thermally driven phase changes. It is based on mixture theory combined with a suitable kinetic
model for phase evolution and explicitly accounts for reorientation of the crystalline anisotropy and
the associated symmetry changes which are essential to the observance of memory effects. Com-
putational methods employing the energetic potentials, which are required in order to estimate the
transformation history, are discussed in detail. Numerical examples are provided which illustrate
the behavior of the model for sample cubic↔ tetragonal and cubic↔ orthorhombic shape memory
materials. The complex behavior predicted is similar to that seen in selected physical experiments
and is indicative of the power of the proposed modelling methodology. In particular the model
predicts unsymmetric response in tension and compression, loss of shape memory effect in poly-
crystalline settings with high symmetry martensites, and qualitative twin structures among many
other complex behaviors.
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1. INTRODUCTION

The rapidly expanding body of literature addressing topics related to shape memory alloys is a
testament to the complexity of the phenomena as well as the growing interest in applying it advan-
tageously in industrial/commercial applications. With this interest comes a need for computational
models which can be used to estimate the behavior of such materials in real world problems with
general boundary conditions. Although a large number of detailed descriptions of the shape mem-
ory process have been advanced, the need for computational simulations distinguishes between the
theoretical and numerical models, both of which are valuable in their own right. This paper is
concerned with a three dimensional model which attempts to strike a balance between the desire
to include a reasonably detailed description of the physical process with the need to solve complex
boundary value problems numerically. The work is a direct extension of the one dimensional model
proposed in Govindjee & Hall (1999a).

The general difficulty in modeling the shape memory effect and related solid-solid phase trans-
formations is elucidated nicely in the body of literature that aims to treat the problem from a
strictly elastic equilibrium viewpoint; see for example Ball & James (1987, 1992), Milke, Kuczma
& Theil (1998), Smyshlyaev & Willis (1999), and further references therein. The central point is
that the problem is governed by a non-convex structure and that the equilibrium energy admits
a collection of (point group) symmetry related minimizers. Further, the infimum of the elastic
energy is not attained by the energy functional and this naturally leads to the production of fine
microstructure. From a numerical perspective this model structure leads directly to a problem that
will display strong computational grid dependence and a lack of global convergence. To circumvent
these issues, the notion of a relaxed problem has been introduced (see for example Kohn 1991) by
means of a quasi-convex energy functional; the primary property of this relaxed problem is that it
posses the same infimum of the original problem and furthermore it attains the infimum. Utilizing
this notion Carstensen & Plecháč (1997, 1998) have shown how one may numerically solve general
boundary value problems, essentially using standard methods for elasticity, and further extract mi-
crostructural information from the solutions – viz. the Young measure of the strain field which in
this context is basically the volume fraction of the phases. They were able to do this for the special
case of a two-well energy functional. The extension to a more practical number of wells, say 13 for
example in the case of Nickel-Titanium alloys, is complicated by the construction of the relaxed
energy functional; see for example Smyshlyaev & Willis (1999) for a discussion of the three-well
problem.

The complexity of the pure elastic viewpoint has led to the development of a parallel body of
literature that deals with a variety of regularized versions of the above described problem. Popular
in this regard are theories that utilize some type of homogenization theory in conjunction with a
set of internal variables that characterized the microstructure of the material and its evolution;
see for example Boyd and Lagoudas (1996a, 1996b), Huang & Brinson (1998), and further refer-
ences therein. Central to using such models in a numerical setting is the construction of evolution
equations for the internal variables that characterize the microstructure of the material. These are
often postulated as in Lubliner & Auricchio (1996) or developed based upon specific microstructural
geometry assumptions as in Huang & Brinson (1998). Here we follow along the lines proposed by
Abeyaratne, Kim & Knowles (1994) and Achenbach & Müller (1985). In this line of reasoning
the evolution equations are developed using transition state kinetics which are based on methods
typically employed in statistical physics/kinetics.
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The basis of the model is encapsulated in the idea that the martensitic variants may be considered
a family of idealized thermoelastic materials coexisting in a mixture which is parameterized by a set
of volume fractions. To this is added the simplifying assumption of a pointwise homogeneous mixture
as motivated by the diffusionless nature of experimentally observed martensitic transformations.
The evolution of the system is then assumed to be governed by a simple kinetic law based on
statistical physics and the explicit computation of the energetics of the problem. This approach has
the advantages of being independent of spatial dimension while capturing the symmetry changes
induced by both crystalline reorientation and phase change. From a computational viewpoint it is
particularly noteworthy that the model is robust in a numerical setting. These points are highlighted
in the presented work as outlined below.

Section 2 briefly describes the physics of shape memory in order to motivate the kinematics of
the model presented in Section 3. Then after discussing the mass balance, energy structure, and
kinetics of the model, the treatment of the required barrier height calculations is detailed. This leads
into Section 4 where the numerical issues of a discrete implementation are covered, and Section 5
which provides a number of numerical simulations covering two classes of shape memory materials.

2. DEFORMATION, TWINNING, AND KINEMATICS

The development of the constitution begins with the assumed existence of a family of idealized mate-
rials comprising a bounded deformable continuum moving in R3. The motion may be characterized
in terms of a reference and a spatial configuration which are denoted by Ωo and Ω respectively. In
considering the composition of the continuum, we will for the moment adopt the notion that any
point in the continuum is occupied by a single material α ∈ {1, 2, 3, . . . v+1}. This approach natu-
rally leads to the existence of interfacial surfaces dividing volumes occupied by different materials.

Ω̃o
α

Ω̃o
β

φo

n

Figure 1. Configuration of an interfacial surface φo with normal n dividing the reference config-
uration of a body Ωo.

As an example, the illustration of Figure 1 shows compatible subregions of the (reference) body
divided into portions Ω̃α

o and Ω̃
β
o by the phase boundary φo. These regions map into the spatial

configurations Ω̃α, Ω̃β and the spatial phase boundary φ. The physics of the problem require that
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the deformation map be continuous in the manner

[[x]] = xα − xβ = 0, (1)

where [[·]] denotes the value of the jump across the phase boundary. Superscripts α and β denote
maps associated with regions Ω̃α

o and Ω̃
β
o respectively. Defining the deformation gradient F in the

usual manner, the well known jump condition

[[F ]] = f ⊗n (2)

may be derived as a geometric condition of compatibility where f is a vector in the spatial configu-
ration, and n is the normal to the surface φ in the reference configuration; see Truesdell & Toupin
(1960) and Truesdell & Noll (1965) for a formal discussion of surfaces of discontinuity. Expressed
in terms of the Right Cauchy Green deformation tensor (C = F TF ) the jump condition has the
equivalent forms

[[C]] = fα ⊗n + n ⊗ fα − γ2n ⊗ n
= fβ ⊗ n + n ⊗ fβ + γ2n ⊗ n,

(3)

where fα = (F α)T f , fβ = (F β)T f , and γ2 = f ·f . It is also interesting to note from Eq.(2) the
geometric relation

fα − fβ = γ2n. (4)

Next, applying the jump condition to the Green Lagrange strain measure E = 1
2
(C − 1) results in

the relation
[[E]] = 1

2
[[C]], (5)

which is often given in the infinitesimal form

[[ε]] = 1
2
(f̃ ⊗ n + n ⊗ f̃ ), (6)

where f̃ is the leading order approximation to either fα or fβ. The above results, which arise from
arguments regarding the behavior of the deformation map across the surface of discontinuity, may
be further specialized to a class of piecewise homogeneous motions which are of the form

F α = QF βH , (7)

where for the moment it is sufficient to consider Q and H to be elements of the proper orthogonal
group† over R3. This implies that det(F α) = det(F β), and by defining a = (F β)−1f = (Cβ)−1fβ

the relation
a·n = 0 (8)

follows from the determinate condition. The definition of a also allows one to express the jump
condition of Eq.(2) in the well known form

F α = F β(1+ a ⊗ n) (9)

†Gurtin (1983) provides proof of Ericksen’s theorem regarding the nature of both Q and H as π rotations for
twinning deformations.
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where the operator 1+a⊗n is noted to exist in the reference configuration. An equivalent derivation
which is often given in the literature formulates the spatial operator 1+ f ⊗ m so that

F α = (1+ f ⊗ m)F β (10)

where m = (F β)−1n. By the same arguments as used previously, it is also found that f ·m = 0 so
that both the operators 1+a⊗n and 1+f ⊗m have the characteristic equation (λ−1)3 = 0, and
may be interpreted as a simple shear. From a crystallographic viewpoint, the existence of regions
(twins) which approximate the particular kinematic relationships derived above are essential to the
observance of shape memory as discussed next.

A conceptual understanding of the shape memory phenomena exhibited by certain alloys can
be attained through the consideration of a material which may exist in two solid phases belonging
to different crystal systems. Based on the measurable lattice parameters of the two systems, a
homogeneous deformation process from the high symmetry phase to the lower symmetry phase
may be described by a right stretch deformation tensor U which minimizes the strain energy of the
solid. However, if the point group of the high symmetry phase (termed austenite) is given by P ,
then it is clear that all unique variations of

Û = HUHT , H ∈ P (11)

are admissible minimizers as well. The resulting set {U 1,U2 . . .U v} describes the “lattice corre-
spondence” variants of the low symmetry phase, which we will hereafter refer to as martensitic
variants. The term twin compatible variants is defined by the satisfaction of Eq.’s(9, 10, or 6) with
regard to the deformation U . For example, satisfaction of the expression

[[ε]] = ε̂(Uα)− ε̂(U β) = 1
2
(f̃ ⊗ n + n ⊗ f̃ ) (12)

implies that the variants defined by Uα and Uβ are (first order) twin compatible. The structure of
Eq.(12) also provides the sufficient (though not necessary) condition that the variants α and β are
not twin compatible when [[ε]] has full rank. This can be proven by considering the characteristic
equation

f(λ) = −λ3 + I([[ε]])λ2 − II([[ε]])λ+ III([[ε]]) (13)

and the fact that III([[ε]]) = det(f̃ ⊗n+n⊗ f̃ ) = 0. This condition can be used to easily determine
variants which are not possibly twin related. The existence of such twin compatible variants, and
the ability of the material to transform between them without inducing permanent slip deformation,
is the key to the observance of shape memory.

A description of the process is as follows: Taking the reference state as a single crystal of the
high symmetry phase, the unstressed material is sufficiently cooled so that a solid-solid phase trans-
formation occurs resulting in a self-accommodating fine mixture of the low symmetry martensite
phases. Depending upon the symmetry of the phases, subsequent mechanical loading may produce
a significant rearrangement of the martensitic structure to accommodate the load (resulting in an
apparently permanent offset to the viewer at a macroscopic level). However, upon reheating the
shape change induced by this deformation process is recoverable through a return to the high sym-
metry phase. The magnitude of the shape memory, i.e. the set of fully recoverable strains, is a
function of the symmetry change between the phases. For materials in which all of the variants are

5



twin-related in the sense described previously, the recoverable strains are the convex set bounded
by the lattice correspondent (Bain) strains. An example is provided by the cubic to tetragonal
solid-solid phase transformation for which there are three variants and the infinitesimal recoverable
strain set L is given by (Bhattacharya & Shu 1998)

L =
{

ε | ε =
3∑

i=1

κiε
i ,

3∑
i=1

κi = 1 , κi ≥ 0

}
. (14)

It is worth noting that in the general case not all transformations have this feature; e.g. not all of the
cubic to monoclinic variants are twin compatible, just as the austenitic phase is in general not a twin
for a variant of the martensitic phase. This observation is related to the fine twinning structures
and formation of plate variants that are seen experimentally. For the present purpose, we take the
recoverable strain set L as an essential feature for inclusion in the constitutive model; for further
discussion of twin compatibility in various alloys see Bhattacharya & Shu (1998), Bhattacharya
(1993), Bhattacharya & Kohn (1996) and references therein.

3. CONSTITUTIVE MODEL

From a modeling perspective the embedding of accurate physics, or in this case detailed crystal-
lography, is often at odds with the need to construct a constitution which results in a tractable
boundary value problem. In particular, the development of a model which requires the tracking
of interfacial boundaries over a large three dimensional structural system is currently not feasible
within the confines of the need for moderate computational expense. At the other extreme, the
complexity of solid-solid phase transformations implies that purely phenomenological models can-
not simulate with any confidence trends beyond those used in their calibration. The work presented
here is an attempt to reconcile these problems through the application of classical mixture theory
to a family of v + 1 idealized thermoelastic materials representing the austenite phase and the v
variants of the martensitic phase. This approach, which does not endeavor to rigorously reproduce
the richness of crystalline structure that can exist in solid transforming materials, has the advantage
of capturing the recoverable strain set L as well as the essential physics of the transformation.

The classical development of mixture theory (Atkin & Craine 1976) allows for each point of a
body (Ω) to be simultaneously occupied by any number of constituent materials which are free to
enjoy their own path in the field variables (e.g. space, temperature). By taking the history of the
composite body as a functional of the constituent histories, a wide range of complex phenomena
(e.g. diffusion, chemical reactions, etc.) can be modeled. However, in light of the diffusionless
nature of the phase transitions under consideration, it is reasonable to begin with the assumption
of a pointwise homogeneous mixture. That is, rather than considering the individual motions
x = ϕα(Xα, t), to each point X ∈ Ωo is assigned a single spatial position x, a single absolute
temperature θ, and a set of fractions ξα representing the volume fraction of each material at that
point. The time history is then taken as the sufficiently smooth functions

x = ϕ(X, t) , θ = θ̂(X, t) , ξα = ξ̂α(X, t) (15)

from which the deformation gradient F and the Green-Lagrange strain tensor E = 1
2
(F TF −1) are

defined. Although a number of conceptual interpretations may be applied to Eq.(15) with regard
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to the problem at hand, for the moment it is sufficient to consider the model as a superposition of
idealized crystalline lattices whose skeletal motion is approximated by the macroscopic deformation.
While beyond the scope of the present work, the general applicability of this concept to various
problems is discussed at length by Zanzotto (1996). We next investigate relations predicated by the
mass conservation principal.

Conservation of Mass

In the present work it is presumed that the ratio (V α/V ) of volume occupied by material α to
the total volume takes on a finite value ξα in the limit of vanishing volume V . For a fixed set of
materials this implies that the volume fractions satisfy∑

α

ξα = 1 ; 0 ≤ ξα ≤ 1 (16)

at the resulting point. By then assigning to each member of the mixture a reference density ρα
o

which maps to a unique density ρα in the spatial configuration, the mass m of the body may be
computed as

m =

∫
Ω

∑
α

ραξα, (17)

where Ω denotes integration over the spatial configuration of the body. Neglecting the possibility
of mass flux across the bounding surface ∂Ω, mass conservation states that the time rate of change
of the mass is zero; i.e.,

ṁ =
d

dt

∫
Ω

∑
α

ραξα = 0. (18)

With the kinematic assumption that a single velocity vector v = v̂ (x, t) describes the motion at
each point, the transport theorem takes on the form

ṁ =

∫
Ω

∑
α

[
˙ραξα + ραξαdiv(v)

]
= 0 (19)

for the solid mixture. Then, by defining the Jacobian of the deformation gradient J = det(F ) the
fundamental relations ρα

o = ρ
αJ and d

dt
J = div(v)J are also found to maintain applicability in the

present setting. Taking account of this with regard to Eq.(19) results in the equivalent statement
of mass conservation

ṁ =

∫
Ω

∑
α

ραξ̇α = 0. (20)

Through the limitation imposed by assuming that the reference densities of all the materials are
negligibly close, (ρα

o = ρ
β
o ∀ α, β), the conclusion that each point in the body satisfies

∑
α ρ

αξ̇α = 0
may be modified to state ∑

α

ξ̇α = 0. (21)

In accordance with this simplification we will no longer place superscripts on the densities; it will be
understood that they are all taken as equal. As will be seen, the fundamental restrictions of Eq.’s
(16) and (21) are directly related to the structure of the phase transformation equations. However,
in order to discuss the transformation kinetics, the constituent and mixture energy functions must
be introduced first.
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Potential Energy Functions

Viewing the mixture as a collection of idealized thermoelastic materials, a simple energy function
ψα = ψ̂α (E, θ) may be constructed for each constituent such that ρoψ

α gives the Helmholtz free
energy per unit volume. Motivated by the kinematic considerations outlined in Section 2, a free
energy function is assigned to the austenite phase as well as one for each of the v martensitic
variants. The free energy of the mixture is then comprised of, but not limited to, the sum of the
individual free energy functions multiplied by their respective volume fractions. Additionally, an
energy term ε = ε̂ (E, θ, ξα) arising from material interaction, e.g. an interfacial energy term, may
be included in the approximation of the mixture free energy

ρoΨ =
∑

α

ξαρoψ
α + ε, (22)

where it is clear that Ψ = Ψ̂ (E, θ, ξα). The particular free energy functions chosen are an extension
of those used in the one dimensional implementation presented in Govindjee & Hall (1999a) based
upon Abeyaratne, Kim & Knowles (1994). For material α, the mechanical and thermomechanical
terms of the free energy are given by

χα = 1
2
(E − Eαt) :Cα : (E − Eαt)− (∆θ)Eαθ :Cα : (E −Eαt) (23)

where Eαt is the Bain strain, C
α is the fourth order elasticity tensor, Eαθ is the thermal expansion

tensor, and ∆θ = θ−θo is the temperature change relative to the reference state. Out of convenience,
the materials are ordered such that austenite corresponds with α = 1 in which case Eαt=1t = 0. It
is also noted that in general Cα and Eαθ are anisotropic in accordance with the crystal system of
material α. In addition to χ̂α(E, θ), the free energy also has a purely thermal contribution φ̂α(θ)
in the form

φα = ρocθ(1− log(θ/θo))− ρoλ
α(1− θ/θo), (24)

where the heat capacity c is assumed constant for all materials. Similarly the latent heat λα is
taken as equal for all the martensitic variants, and zero for austenite (λα=1 = 0). Finally, in the
interest of simplicity, the specification of ε is deferred; for the moment it is assumed that ε ≈ 0.
The resulting free energy

ρoΨ =
∑

α

ξαρoψ
α =

∑
α

ξα(χα + φα) (25)

is the Helmholtz free energy per unit volume for the mixture. As a consequence of this choice, the
effective second Piola-Kirchhoff stress S is determined as the derivative of the Helmholtz Potential
with respect to the Green-Lagrange strain

S = ρo
∂Ψ

∂E
=

∑
α

∂χα

∂E
(26)

S =
∑

α

ξαCα : [E − Eαt − (∆θ)Eαθ ], (27)

where the result has been expressed as a sum of contributions from each material. Similarly, the
second derivative ρo

∂2Ψ

∂(E)2
defines an effective modulus for the mixture denoted by

C =
∑

α

ξαC
α, (28)
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where the composite elasticity tensor is a sum of contributions from the constituent materials.
Typically the austenite (α = 1) phase of materials exhibiting memory has a cubic structure, whereas
the variants of the martensitic phase are particular orientations of a lower symmetry crystalline
structure. Through changes in the volume fractions, it is seen that Eq.(28) reflects the changing
anisotropy of the material. The specification of the evolution equations governing the volume
fractions is aided by the construction of a Gibbs like function.

Starting with the free energy function of Eq.(25), the transformation

G = inf
E

{ρoΨ− S :E} (29)

defines G = Ĝ (S, θ, ξ) where as before S is the second Piola-Kirchhoff stress measure for the
mixture, θ is the absolute temperature, and ξ represents the volume fractions arranged as a vector.
By defining ĝα(S, θ,E) as the potential energy function gα = ρoψ

α−S :E, Eq.(29) may be rewritten
as

G = inf
E

{ρoΨ− S :E} = inf
E

{∑
α

ξαgα

}
. (30)

In this form it is seen that when the mixture is composed of a single material, say ξβ = 1, the Gibbs
energy is determined by the critical point of the function gβ . Under an applied stress field differences
in the single variant Gibbs energies at varying volume fractions are taken as indicators of the
driving potential for transformation. A framework for modeling phase transformation/reorientation
is considered next.

Transformation Kinetics

The transformation kinetics follow from the work of Abeyaratne, Kim &Knowles (1994), Abeyaratne
& Kim (1997), and the body of work by Müller and co-workers (e.g. Achenbach 1989); see also
Govindjee & Hall (1999a). The framework is based on statistical physics; the essential postu-
late being that the net probability of transformation can be estimated from the energetic barriers
between the individual phases. This idea is captured in the equation set

ξ̇α =

β �=α∑
β

ω
(
Pβαξ

β − Pαβξ
α
)
, (31)

where ξ̇α is the transformation rate for material α. The terms Pβα and Pαβ estimate the transition
probability from material β to α and α to β respectively. By attenuating these probabilities by the
corresponding volume fraction from which the transformation is occurring, the difference between
the resulting products multiplied by the attempt frequency ω approximates the transformation rate.
This rate dependent model may be expressed compactly as:

ξ̇ = Qξ, (32)

where ξ is the vector of volume fractions and Q is the matrix assembly of terms from Eq.(31).
Since Q is the generator of the evolution process in the volume fractions, it is worth noting that
any column sum from Q is equal to zero thereby satisfying the conservation of mass statement given
by Eq.(21).
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Denoting k as Boltzmann’s constant and ∆v as the transforming volume, an Eyring model is
used to calculate the admissible transition probabilities Pαβ as

Pαβ = exp

[
−∆vbαβ

kθ

]
(33)

in which bαβ represents the energetic barrier in the transition from α to β. As alluded to previously,
the barrier energy arises from the potential energy profile as parameterized by the volume fractions.
In particular the barrier for transition from material α to material β is taken as the difference
between the energy of constituent α and the critical point on the energy path between the two
materials. This is represented by

bαβ = b̂αβ (S, θ) = Gαβ −G (S, θ, ξα = 1) ≥ 0 (34)

where for a fixed value of stress, Gαβ may be thought of as the minimum point over the set of strains
where the potential functions gα and gβ are equal in value. A more precise definition is given in the
following section in which the computational aspects of Eq.(34) are discussed.

Barrier Energy Calculations

Previous implementations of this model have been unidimensional at the constitutive level; the
current implementation includes modifications to extend it to three spatial dimensions. To simplify
matters in the present investigation we limit our focus to those materials which have twin compat-
ible variants, and therefore recoverable strain sets of the form given by Eq.(14). As an example,
consider a material with a cubic austenite phase and an orthorhombic martensitic phase. This case
produces six martensitic variants, all of which are twin compatible as per the definition of Eq.(6)
(Bhattacharya & Kohn 1996). Accounting for austenite, there are then a total of 21 unique bαβ

computations which are necessary to determineQ. Also, contrary to the situation in one dimension
(Govindjee & Hall 1999a), calculation of the barrier energy under three dimensional stress states
does not permit a closed form solution. For these reasons, in this section we discuss an approach
for computing the barrier heights in a reasonably efficient fashion.

If the constitution is unidimensional, the term Gαβ is interpreted as the intersection between
the potential functions gα and gβ ; a point. However, in higher dimensions the intersection is no
longer a point, and a different approach is necessary. The desire is to find the path of minimum
energy subject to the restriction that the values of gα and gβ are equal. To this end, Gαβ may be
precisely defined as the value of the Lagrangian potential

Π = Π̃ (λ,E) = gβ + λ
(
gα − gβ

)
(35)

at its critical point (note that S and θ are fixed in Π). In words, it is desired to minimize the energy
gβ within the space defined by gβ = gα. In this context the Lagrange multiplier λ plays the role of
a volume fraction as can be seen by considering the critical equations arising from this formulation:

∂Π

∂E
= λ

∂gα

∂E
+ (1− λ)∂g

β

∂E
= 0 (36)

∂Π

∂λ
= gα − gβ = 0. (37)
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In one dimension, both equations and all the arguments were scalar and this trivialized the problem
to allow for the direct solution for the barrier energy. In three dimensions an identical strategy
proves intractable, so it is necessary to consider an alternate approach whereby Eq.(36) is first

solved as a function of λ, i.e., Eπ = Ẽ
π
(λ). With this result, Eq.(37) may be solved as a scalar

equation of a scalar variable (λ). Furthermore, this point represents the extremum of the potential

G̃ (S, θ, ξγ = 0 ∀γ �= α, β). A summary of the approach is given by Algorithm 1 below.

Algorithm 1. Barrier Energy Computation

1. Input :
{S , θ , α , β} (38)

2. Formulate Π:

Π = λgα + (1− λ)gβ (39)

3. Find critical point w.r.t E:

Eπ =

{
τ

∣∣∣∣∣∂Π̃ (λ, τ )∂τ
= 0

}
(40)

4. Find critical point w.r.t λ:

λπ =

η
∣∣∣∣∣∣
dΠ̃

(
η, Ẽ

π
(η)

)
dη

= 0 , η ∈ [0, 1]

 (41)

5. Compute energy value:

Gαβ = Π̃
(
λπ, Ẽ

π
(λπ)

)
(42)

6. RETURN

Note that steps 4 and 5 may be combined into an equivalent statement

Gαβ = max
η∈[0,1]

{
Π̃

(
η, Ẽ

π
(η)

)}
(43)

which proves convenient when determining λπ. After the discrete form of the equations are derived
in the following section, the numerical solution of Eq.(43) can be achieved by any of a number of
bounded iteration schemes.
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4. DISCRETE FORM: IMPLEMENTATION

In this section we briefly consider some aspects of the discrete form of the constitutive model
which are needed in order to solve general boundary value problems. It is assumed that the model
is to be implemented within a traditional strain driven finite element code, so we will consider
implementation of the constitutive model as an independent entity within an unspecified array
of integration points. As such, the constitution will have available to it the current strain and
temperature values (En+1, θn+1) at time tn+1, as well as the previous history variables ξn. Of
interest is the computation of the updated stress value Sn+1, the updated volume fractions ξn+1,
and the algorithmic tangent Calg. The notation adopted in this section denotes quantities evaluated
at times tn and tn+1 (where tn+1 = tn +∆t, ∆t > 0) by the subscripts n and n + 1 respectively.

In advancing the discrete form of the constitution from time tn to time tn+1, we begin by writing
the effective modulus, stress and rate matrix at time tn+1:

Cn+1 =
∑

α

ξαn+1C
α (44)

Sn+1 =
∑

α

ξαn+1C
α : [En+1 −Eαt −∆θn+1E

αθ ] (45)

Qn+1 = Q̂ (Sn+1, θn+1) (46)

where ∆θn+1 = θn+1 − θo is the relative temperature change at time n+ 1. Note that Cα, Eαt, and
Eαθ are material constants. The last line, Eq.(46), gives the functional dependency of the discrete
generator Qn+1 as needed for the integration method described next.

The choice of a discrete form for Eq.(32) is critical to the computational expense of the imple-
mentation, and as such has been the subject of prior investigation. With regard to the solution of
the nonlinear discrete constitutive equations, the problem is sensitive to variations which violate
mass conservation. For this reason, Govindjee & Hall (1999b) outlined the use of a simple integra-
tion rule in combination with explicit enforcement of the physical principal of mass balance. This
allows one to use a “Backward Euler” rule

ξn+1 = ξn +∆tQn+1ξn+1

= (1−∆tQn+1)
−1ξn = Hn+1ξn (47)

along with an explicit orthogonal projection to the space of volume fractions satisfying Eq.’s(16,21).
This projection is performed during the constitutive iteration defined by the residual function

f (ξn+1) = ξn+1 − Hn+1ξn. (48)

Due to the convexity of the constraint space, the projection has the attractive feature of always
reducing the error in the integration. Furthermore, the composite solution strategy was found in
one dimension to be accurate and efficient for our particular application. A summary of the solution
strategy, details of which are given in Govindjee & Hall (1999a, 1999b), is shown in Algorithm 2.

Algorithm 2. Constitutive Iteration

1. Input at time tn+1:
{En+1 , θn+1 , ξn} (49)
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2. Initialize values:

S(k) = Ŝ (En+1, θn+1, ξn) (50)

ξ(k) = ξn (51)

3. Compute the residual function:

f (k) = ξ(k) − H(k)ξn (52)

4. IF ‖f‖∞ < TOL THEN

ξn+1 = ξ(k) (53)

Sn+1 = S(k) (54)

C
alg
n+1 =

∂Sn+1

∂En+1
(55)

RETURN ⇒ END (56)

5. ELSE

ξ(k+1) = ξ(k) − κ
[
∇ξf

(k)
]−1

f (k) (57)

S(k+1) = Ŝ
(
En+1, θn+1, ξ

(k+1)
)

(58)

k = k + 1 (59)

6. GOTO STEP 3

As clarification, it is noted that during the constitutive iteration, the aforementioned projection
is only performed when the volume fractions leave the constraint space. Secondly, C

alg
n+1 denotes

the algorithmic tangent (Simo & Taylor 1986) arrived at by the linearization ∂Sn+1/∂En+1 of the
discrete form of the continuum equations. The value of this consistent tangent, which is an essential
component of the implementation in a finite element setting, is given by the expression

C
alg
qrkl =

[
Iijqr −

∑
α

∑
β

Sα
ij

∂Hαβ

∂Sqr
ξ̃β

]−1

Cijkl (60)

where summation over roman indices is implied. The shorthand notation ξ̃ was adopted for ξn to
avoid confusion with subscripts; likewise time subscripts have been dropped in the understanding
that unless noted otherwise, all quantities are evaluated at time tn+1. The symbol I is the rank four
identity tensor, and the remaining terms of Eq.(60) are defined as

Sα
ij = C

α
ijab(Eab − Eαt

ab −∆θEαθ
ab ) (61)

Cijkl =
∑

β

ξβC
β
ijkl (62)

∂Hαβ

∂Sqr
=

∑
γ

∑
δ

(∆t)Hαδ
∂Qδγ

∂Sqr
Hγβ (63)
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To give an indication how an element of
∂Qδγ

∂Sqr
in Eq.(63) is computed, consider a single term Pαβ

from the matrix Q. Using Eq.’s(33,34) it is found that

∂Pαβ

∂Sqr
=

−∆vPαβ

kθ
(
∂Gαβ

∂Sqr
− ∂Gα

∂Sqr
). (64)

Although the second term ∂G(S,θ,ξα=1)

∂S
= −(Cα)−1 :S − Eαt − Eαθ may be computed simply from

Eq.(30), the first term
∂Gαβ

∂Sqr
warrants further clarification. Starting from Eq.(35) the linearization

of the lagrangian Π̃ may be written as the sum of the four terms

dΠ̃

dS
=
∂Π̃

∂S
+
∂Π̃

∂θ

∂θ

∂S
+
∂Π̃

∂E
:
∂E

∂S
+
∂Π̃

∂λ

∂λ

∂S
. (65)

This expression may be simplified by considering that the numerical evaluation of the tangent only
occurs at the solution point given by Gαβ = Π̃(Eπ, λπ) as previously defined. Looking at Eq.(65),
it is seen that the first components of the third and fourth terms are the first and second critical
equations of the lagrangian respectively (Eq.’s 36,37). As such, they do not contribute to the barrier
height tangent with respect the stress when evaluated at the critical point of the lagrangian. Further
noting that the current implementation treats the temperature as an assigned field eliminates the
second term of Eq.(65) leaving only the result

dGαβ

dS
=
∂Π̂

∂S

∣∣∣∣∣
(λπ

,Eπ
)

= −Eπ (66)

for the particular combination of variants α and β. As a final note, it should be stated that in the
assembly of contributions from each term Pαβ to the algorithmic tangent described by Eq.’s(60-63),
care must be taken to properly account for the mapping between tensors and matrices. Doing
so ensures the desirable global convergence properties observed in the examples given in the next
section.

5. NUMERICAL SIMULATIONS

The examples provided in this section are intended to demonstrate the behavior of the model
under various thermomechanical loading patterns. After a brief discussion of the requisite material
parameters, the first group of examples concern the simulation of a material with cubic↔ tetragonal
symmetry in the phase change. In particular, the simulations touch upon aspects of the resulting
recoverable strain set, the observance of both pseudoelastic and martensitic transformations, and
the prediction of polycrystalline behavior.

The second group of examples are with regard to a material which may undergo cubic ↔ or-
thorhombic transformations. After beginning with a baseline example on the volume fraction evolu-
tion in the pseudoelastic region, the next example simulates nonhomogeneuos combined shear-axial
loading of a shape memory plate. The final example simulates the behavior of a tube undergoing
torsion with various boundary conditions. In particular, axially unrestricted torsion is compared
with torsion-tension and torsion-compression behaviors.
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Material Parameters

Regardless of the particular material under consideration, the constitution requires the specification
of the following material parameters: austenite and martensite elasticity tensors (Cα=1, Cα �=1),
austenite and martensite thermal expansion tensors (Eαθ=1θ , Eαθ �=1θ), the martensitic Bain strains
(Eαt), the attempt frequency (ω), the transformation volume (∆v), the heat capacity (c), the latent
heat (λt), and the reference density (ρo). Additionally, the relative orientation of the variants must
be known in order to “properly align” the martensitic properties. For example, Nenno & Saburi
(1981) provide the orientation of the lattice vectors of each of the martensitic correspondence
variants with regard to a basis aligned with the parent cubic austenite. These authors also provide
the Bain strain broken down into a shape change B and a shearing motion P in a basis oriented
along a given basal plane of the martensite. To obtain the homogenous transformation deformation
with regard to a basis oriented along the austenite lattice vectors one must compute

F α = (Rα)PB(Rα)T (67)

for each of the variants α. While this locates the martensite relative to the austenite, it is still
necessary to orient the parent austenite basis with regard to the chosen reference basis for the
problem. In the current implementation, a single set of martensite material properties are initially
constructed with respect to the user input orientation of the cubic parent axes. By then looping
over the number of variants, each of these are rotated into their respective orientations using the
Rα relations. The geometric properties for the problems considered herein are summarized in
Appendix A.

Tables 1 and 2 list the chosen material parameters for the cubic ↔ tetragonal and cubic ↔
orthorhombic simulations respectively; the input required for orientation is given in Appendix A.
The data entries in the tables were culled from a wide variety of sources (Robertson 1990, Nenno
& Saburi 1981, Russell 1998, Yasunaga, Funatsu, Kojima, Otsuka & Suzuki 1983, Hosford 1993,
Suezawa & Sumino 1976), and as such do not accurately represent a specific material but rather a
generic material of the given class. For this reason, as well as the fact that we have not included the
effects of plasticity, the examples in the following sections are intended to primarily demonstrate
the qualitative strength of the model. We begin by considering a material with three variants of
martensite.

Cubic ↔ Tetragonal

Example 1: Applied strain path.

As a first example we consider the response of the constitution to an imposed strain path in the
direction of the second martensitic bain strain (αt = 3t)

E(t) = κ(t)E3t (68)

where κ(t) is a sawtooth load which varies between plus and minus one in magnitude. The strain
rate is set at 1.d−4 per second as computed from the norm of the Bain strain, while the temperature
is fixed at 363 K for the duration of the run. The initial values of the volume fractions were chosen,
consistent with the initial load and temperature, as purely austenite.
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Table 1: Approximate Properties for a Cubic-Tetragonal Material

Reference density ρ = 6448.1 kg/m3

Austenite Properties C1111 = C2222 = C3333 = 141.0× 109 Pa
(austenite basis) C1122 = C2233 = C1133 = 125.0× 109 Pa

C1212 = C2323 = C1313 = 97.0× 109 Pa
Eθ

11 = E
θ
22 = E

θ
33 = 6.5× 10−6 1/K

Martensite Properties C1111 = C2222 = 197.0× 109 Pa
(martensite basis) C3333 = 141.0× 109 Pa

C1122 = 45.5× 109 Pa
C2233 = C1133 = 119.5× 109 Pa
C1212 = 19.7× 109 Pa
C2323 = C1313 = 58.8× 109 Pa
Eθ

11 = E
θ
22 = 6.0× 10−6 1/K

Eθ
33 = 6.5× 10−6 1/K

Latent heat λt = 14.5× 103 J/kg
Heat capacity c = 4.0× 102 J/(kg K)
Attempt frequency ω = 12× 103 1/s
Transformation volume ∆v = 1.612× 10−27 m3

Martensitic Bain strain E11 = E22 = −0.0608
(martensite basis) E33 = 0.1302

By the response indicated in Figure 2, it is seen that as expected, the model predicts the
formation of the second variant as κ grows above zero. In contrast, the negative strain path
(κ(t) < 0) forms an equal mixture of the first and third variants qualitatively predicting a twin
formation. In both cases, the unloading path sees a return to austenite as the load is removed.
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martensite variant 1 volume fraction

austenite volume fraction

load factor

0

0.5

1

1.5

0

0.5

1

1.5

0

0.5

1

1.5

0

0.5

1

1.5

Figure 2. Pseudoelastic variation of the volume fractions for a tetragonal shape memory alloy
under mechanical cycling. The first plot gives the loading pattern function κ(t) from Eq.(68). The
remaining plots show the evolution of the volume fractions under the load for austenite and each
of the martensitic variants. In each case the dashed line is the sum of the volume fractions.
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Table 2: Approximate Properties for a Cubic-Orthorhombic Material

Reference density ρ = 6448.1 kg/m3

Austenite Properties C1111 = C2222 = C3333 = 141.0× 109 Pa
(austenite basis) C1122 = C2233 = C1133 = 125.0× 109 Pa

C1212 = C2323 = C1313 = 97.0× 109 Pa
Eθ

11 = E
θ
22 = E

θ
33 = 6.5× 10−6 1/K

Martensite Properties C1111 = 189.0× 109 Pa
(martensite basis) C2222 = 141.0× 109 Pa

C3333 = 205.0× 109 Pa
C1122 = 124.0× 109 Pa
C2233 = 119.5× 109 Pa
C1133 = 45.5× 109 Pa
C1212 = 62.6× 109 Pa
C2323 = 54.9× 109 Pa
C1313 = 19.7× 109 Pa
Eθ

11 = 6.5× 10−6 1/K
Eθ

22 = 4.5× 10−6 1/K
Eθ

33 = 6.0× 10−6 1/K
Latent heat λt = 10.0× 103 J/kg
Heat capacity c = 4.0× 102 J/(kg K)
Attempt frequency ω = 12.0× 103 1/s
Transformation volume ∆v = 2.512× 10−27 m3

Martensitic Bain strain E11 = 0.0620
(martensite basis) E22 = −0.0820

E33 = 0.0230

Example 2: Pseudoelastic/Martensitic runs

Having considered the response of the constitution under an idealized strain path, we next consider
a simple three dimensional boundary value problem. The problem consists of a 2 cm single crystal
cube under an applied cyclic load along one of the major axes of the block. Displacement boundary
conditions were chosen in a minimal fashion so that the block was free to expand/contract without
restriction. The austenite lattice was set to be coincident with the orientation of the cube for each of
the problems considered. The calculations were performed using the finite element program FEAP
developed at the University of California at Berkeley (Taylor 1998).

The first run, the results of which are presented in Figure 3, shows the pseudoelastic response of
the material to an applied sawtooth load pattern under a constant temperature of 363 K. Due to the
homogenous nature of the stress pattern, runs with a single element and with a multiple element
mesh produced identical results. Of interest in the response is the dramatic lack of symmetry
observed between the tension and compression responses of the material; this is partially due to the
explicit inclusion of elastic anisotropy in addition to the essential feature of non-symmetry in the
recoverable strain set. Also it is noted that the recoverable strain varies dramatically depending
upon the load path as would be expected in a material with a martensitic phase of such high
symmetry.
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Figure 3. Pseudoelastic response under an applied cyclic load. The vertical axis indicates the
response of the block in newtons, whereas the horizontal axis indicates displacement in the direction
of the load measured in meters. Note the highly non-symmetric pseudoelastic response.
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Figure 4. Martensitic transformation under an applied cyclic load. The vertical and horizontal
axes measure reaction and displacement in the direction of the load in units of newtons and meters
respectively. In contrast to Figure 3, this mechanical load cycle was applied at a significantly lower
temperature and exhibits the type of hysteresis associated with martensitic transformations.

Figure 4 again shows the response of the block to an applied sawtooth load, only at a temperature
of 243 K. In this case the initial martensitic fractions were set to ξ = {0.0 , 0.34 , 0.34 , 0.32}.
The resulting martensitic transformation again shows a lack of symmetry between tension and
compression due to the formation of different volume fraction combinations at each extreme.

Example 3: Shape Memory Cycle.

The next numerical simulation illustrates a typical example of “shape memory” wherein an apparent
residual deformation left from mechanical cycling is recovered through a subsequent thermal cycle.
The material is assumed to begin in a state of equal martensitic volume fractions, under no load, and
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at a temperature below what would be considered the martensitic finish temperature. The material
is then subjected to several cycles of an applied load; the resulting martensitic transformations
leaves the sample with a residual deformation. The temperature is then raised sufficiently to induce
a phase transformation to austenite which has the effect of recovering the induced offset. The
loading path is then closed by returning to the initial conditions by lowering the temperature back
to the original value.

The numerical simulation of a process similar to that described above was applied to a 2 cm
block where the initial equal martensitic volume fractions were aligned such that the parent (cubic)
basis matched the primary axes of the block. Using minimal (unconstrained) boundary conditions
for the problem, mechanical force loading was again applied along one of the major axes of the
block with the resulting behavior shown in Figure 5. The three axes of this plot indicate the
reaction of the block in newtons, the displacement of the block in the direction of the load, and the
temperature value in the material. While the qualitative response of the model is quite reasonable,
it is also significant that throughout both the mechanical and thermal cycles the global problem
was observed to maintain a quadratic convergence rate; see Figure 13 for iteration residuals typical
of the current implementation.
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Figure 5. Shape memory cycle. After martensitic transformation leaves a residual deformation at
zero load, a subsequent thermal cycle is seen to return the system to the initial configuration.

Example 4: High Symmetry Polycrystalline Simulation

The final simulations concerning a cubic ↔ tetragonal material demonstrate the inhomogeneity
induced in a polycrystalline material and its effect on the observance of shape memory phenom-
ena. We begin by considering the application of the model to a problem constrained to planar
strain. The chosen dimensions of the remaining two dimensional problem are 3 cm by 3 cm with
boundary conditions such that an extension may be applied along the vertical axis while horizontal
expansions/contractions remain unconstrained. Using this geometry two problems are considered;
the first is that of a single crystal with the parent lattice along the reference axes; the second is
of a polycrystal composed of sixteen randomly oriented grains (elements). In each case identical
mechanical displacement loads are applied under a constant temperature of 343 K from an initial
austenitic state.
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From the resulting load deformation responses of the two problems, overlayed in Figure 6, it is
apparent that the randomly oriented polycrystal exhibited essentially no transformation in com-
parison to the response of the single crystal. This result is consistent with theoretical calculations
showing that alloys having a relatively high symmetry martensitic phase will not exhibit shape
memory effects when in random or low texture polycrystalline form. As is reflected in the stress
field of Figure 7, inhomogeneities induced by random grain orientations in polycrystalline materials
hinder the cooperative motion required to achieve significant reorientation of the crystal structure.
In particular, it has been proven that randomly oriented tetragonal polycrystals should not be ex-
pected to have any recoverable strain (Bhattacharya & Kohn 1996); our simulation reproduces this
numerically.
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Figure 6. Comparison of single crystal (solid line) and multicrystal (dashed line) responses for
a specimen in plane strain. The vertical axis indicates the reaction in newtons and the horizontal
axis indicates the magnitude of the applied deformation in meters. The grains of the polycrystalline
simulation were given a random orientation.

Cubic ↔ Orthorhombic

Example 5: Applied strain path.

This simulation serves as a baseline problem for the cubic ↔ orthorhombic class of materials de-
scribed in Table 2 and used in subsequent examples. In a manner similar to that of Example 1,
a strain is applied at a point along the path E(t) = κ(t)E4t where the load factor varies between
±1 at a quasistatic strain rate. Since the orthorhombic crystal has six correspondence variants of
martensite, Figure 8 tracks the evolution of the seven volume fractions with respect to the load. As
the load approaches the Bain strain of the third martensitic variant (αt = 4t), the material trans-
forms to the appropriate variant. However, as the load factor reverses, the compressive structure
is a combination of four variants of martensite of equal volume fraction indicating a complex twin
structure. Since the temperature was held at 363 K for the simulation, intermediate (near zero)
load factor values corresponded with a return to the initial condition of austenite.
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Figure 7. The inhomogeneity of stress reflects the random orientation of the grains in a polycrystal
as represented by the materials in each element. The martensitic symmetry is too high to allow
cooperative transformation between the crystals, hence the loss of shape memory effect seen in the
previous figure.

Example 6: Shear panel.

The next example is a single crystal of a cubic ↔ orthorhombic material comprising a small panel
measuring 6 cm wide (along X2) by 12 cm tall (along X1) and 2 cm thick (along X3). This geometry
is meshed in FEAP using eight node brick elements with boundary conditions that simulate fixed
grips at the ends of the long (X1) dimension of the panel so that it may be sheared in the X1 −X2

plane. The third dimension is supported on one plane, but otherwise is free to expand/contract
perpendicular to X3. The orientation of the parent lattice is set coincident with the reference axes,
and the initial phase of the material is set to austenite.

A shearing deformation is then applied at X1 = 12 in the X2 direction while holding X1 fixed.
This results in a nonhomogeneous stress pattern as well as the development of reactions on the
X1 = 0 and X1 = 12 planes. The reaction in the X1 direction is henceforth referred to as the
axial reaction, whereas the reaction in the X2 direction is referred to as the shear reaction. These
reactions are recorded as a fully reversed cycle of applied deformation is performed at a constant
temperature of 363 K. Figure 9 plots both the net shear and axial responses against the lateral
deflection. It is interesting to note that although the global response is essentially symmetric, the
multiaxial and inhomogeneous nature of the stress field imparts any one point in the mesh with a
nonsymmetric response with respect to the load cycle and the evolution of the volume fractions.
This is reflected in Figure 10 which shows the average volume fraction history in an element centered
at ∆X2 = 1.5cm , ∆X1 = 1.2cm from the center of the panel.

Example 7: Torsion tube

The final example is of a tube under several combinations of combined torsional and axial loading.
The analysis was performed on a specimen with an inner radius of 2 mm and a wall thickness of
0.5 mm. The length of the analyzed section was set equal to the inner diameter of the tube, with
fixed grip boundary conditions at either end. After meshing the geometry into eight node bricks
as shown in Figure 11, combinations of purely torsional and axial deformations were applied at the
ends at an approximately quasistatic strain rate. The individual runs are described below.
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Figure 8. Pseudoelastic mechanical cycling of an orthorhombic shape memory alloy. The upper-
most plot shows the load factor, while lower seven plots indicate the evolution of austenite and the
six martensite variants relative to the applied deformation. On the negative load factor cycle equal
volume fractions of martensite variants 1, 2, 5, and 6 are favored.

The first simulation applied the finite displacement torsional load while allowing for free axial
deformation (zero force axial boundary conditions). The nonproportional loading was applied in
increments of 0.5 degrees as measured from the centerline of the tube at the fixed grips. In the
interest of comparing the response under various axial loads, the maximum angle imposed in all
of the simulations was 5 degrees, even when this produced loads expected to induce permanent
slip deformation in such materials. Similarly, the temperature and initial phase were set as 363 K
and austenite for all of the runs; one of the major axes of the austenite was assumed to coincide
with the major axis of the tube. The second simulation applied an axial extension in unison with
the angular deformation, while the third simulation applied an axial compressive displacement in

22



-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 x 10
6

shear reaction
axial reaction

Displacement, m

R
ea

ct
io

n,
 N

Figure 9. Pseudoelastic shear and axial responses of a cubic ↔ orthorhombic panel to an applied
shearing motion. The vertical axis indicates the net reaction in newtons, whereas the horizontal
axis measures the lateral deflection in meters. The material and problem geometry are described
in the text.
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Figure 10. Volume fraction history at a point in the shear panel of Figure 9. The upper-left figure
gives the applied displacement loading pattern for the global problem for comparison with the seven
phase/variant plots. The dashed lines indicate the sum of the volume fractions.

combination with the torsion.

The load-reaction response of the three runs are presented in Figure 12 in the order just described
from top to bottom. A comparison of the axially free torsion and torsion with axial extension reveals
a lowering of the initial transformation load and slightly flatter plateau in the torque-angle response
with the addition of tension. Conversely, the addition of compression has the opposite effect of
increasing the apparent transformation load as seen in the third torque-angle plot. The response is
qualitatively consistent with previous pseudoelastic experimental torsion-tension tests conducted on
shape memory alloys of a different material class (Sittner, Hara & Tokuda 1995). Computationally,
the global problem shows excellent convergence properties as indicated in Figure 13.
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Figure 11. Torsional tube mesh from FEAP. Fixed grip boundary conditions were applied to the
top and bottom of the tube for the axial driven problems; zero force boundary conditions were
enforced for the axially free run.

6. DISCUSSION

The focus of the presented research is on the development of a computationally feasible framework
for the modeling of shape memory alloys which is independent of dimension, provides robust perfor-
mance in the solution of general boundary value problems, and is sufficiently general to incorporate
the different material symmetry classes.

• In particular it is noted that choosing an energetic structure for the model allows us to side step
complex issues associated with making difficult choices about transformation surface criteria
that appear in SMA models more closely aligned with plasticity and generalized plasticity
theory.

• The required barrier height computations have been worked out in detail and it has been
shown how they may be computed for general multidimensional settings.

• The model is seen to be properly linearized for the purpose of solving implicit finite element
problems in an efficient manner (i.e. with quadratic convergence when a Newton method is
employed). The overall behavior of boundary value problems under a wide range of thermo-
mechanical loadings has been observed to be highly robust.

• The model has been found to provide physically reasonable response for two classes of shape
memory alloys despite the fact no attempt has been made to account for intricacies such
as interfacial energy, intermediate plate twinning or plasticity. Complex behavior such as
variant twin pairs and unsymmetric tension-compression behavior arise naturally from the
proposed energetic structure. Further, the model is seen to reproduce important estimates on
recoverable strains in high symmetry martensites and qualitatively reproduce prior multi-axial
experiments on axial-torsion loadings.

Not withstanding the demonstrated power of the model structure, there remain important issues
to address from both a modeling perspective and a computational perspective.

24



• The model at present does not incorporate interfacial energies or plate variants. To date it is
not entirely clear what the structure of these terms should be. However it is noted that the
model framework naturally allows for them to be included.

• The effects of plastic deformation need to be included if certain important industrial processes
are to be simulated with the proposed model. Given the structure, a natural choice would be
an activation energy based plasticity model.

• There is a large amount of anisotropic data that needs to be collected for the use of the model.
To date such a complete set of data has not been reported on any given single material. Thus
an effort needs to be made to collect such data. On the flip side an investigation needs to
be made on the sensitivity of the model to such aspects as the elastic anisotropy; i.e. it
is quite possible that utilizing isotropic moduli would provide reasonable predictions for an
engineering purpose and at the same time simplify some of the computations.

These last three points are all the subject of an ongoing research and will be reported upon
shortly.
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Table 4: Orientation Data

Cubic ↔ Tetragonal
Qα=1 Qα=2 Qα=3

0 0 1 1√
2

1√
2

0 1√
2

− 1√
2

0
1√
2

− 1√
2

0 0 0 1 1√
2

1√
2

0
1√
2

1√
2

0 1√
2

− 1√
2

0 0 0 1

Cubic ↔ Orthorhombic
Qα=1 Qα=2 Qα=3

0 -1 0 0 -1 0 1√
2

0 1√
2

1√
2

0 − 1√
2

− 1√
2

0 − 1√
2

0 -1 0
1√
2

0 1√
2

1√
2

0 − 1√
2

1√
2

0 − 1√
2

Qα=4 Qα=5 Qα=6

1√
2

0 − 1√
2

1√
2

0 − 1√
2

− 1√
2

0 − 1√
2

0 -1 0 1√
2

0 1√
2

1√
2

0 − 1√
2

− 1√
2

0 − 1√
2

0 -1 0 0 -1 0

APPENDIX A. MATERIAL ORIENTATION DATA

The relative orientation of each martensite variant lattice to the austenite lattice is required for the
implementation of the model. In this section, the required alignment data used in the numerical
simulations of Section 5 is presented. By limiting our attention to cubic↔ tetragonal and cubic↔
orthorhombic systems, we only need to be concerned with transformations between orthogonal basis
vectors. For example, a change of coordinates between orthonormal bases ei and ei′ is described
by the tensor Q defined as

Qi′i = ei′ · ei.

Transformations are then accomplished in the usual manner, e.g. Wi′j′ = Qi′iQj′jWij for a rotation
of the second order tensor W .

The experimental data required to compute the transformation tensors (Qα) is typically provided
in the form of the basis vectors ei locating the martensite basis with respect to the austenite basis.
Table 4 summarizes one such set of data as reported by Nenno & Saburi (1981) for a cubic ↔
tetragonal material (Ni-Al) and cubic↔ orthorhombic (Cu-Al-Ni) material respectively. Each entry
gives a component of the tensor Qpm = ep ·em where “m” indicates the normalized martensite basis
vectors, and “p” indicates the austenite normalized basis vectors. In the present implementation we
simply build the stiffness, Bain strain, and thermal coefficient tensors in the austenite basis input
by the user. The Q mappings listed above then provide a means to rotate the tensors into the
proper orientation with respect to the reference basis as described previously.
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Figure 12. Combined torsion and axial loading of a cubic ↔ orthorhombic material tube. The
left column of plots show the applied angle vs torque, the center column shows the applied axial
displacement vs applied angle, and the right column plots give the axial response vs the axial
deformation. The first row gives the results for free axial boundary conditions, the second gives the
results for an applied extension, and the last row is for an applied compression. The units in all the
plots are meters and newtons; the problem is described in the text and in Figure 11. The effect of
axial loading on the pseudoelastic transformation, particularly compression in this example, is seen
from the three simulations.

28



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-5

0

5

10

15

20

25

30

1.0000000E+00 
2.1519799E-02 
1.9536854E-04
5.8814744E-08 

 1.0000000E+00
 2.1140850E-02
 2.1791414E-04
 3.8600242E-08

1.0000000E+00
1.5388917E-02
1.3570821E-04
2.9912975E-08

1.0000000E+00
1.7704600E-02
1.0526243E-04
7.1530738E-09

1.0000000E+00
1.6721208E-02
8.6305903E-05
4.3856808E-09

1.0000000E+00
7.9862034E-03
3.4928556E-06
3.9729908E-12

1.0000000E+00
1.7691437E-02
1.6868924E-04
1.6011014E-081.0000000E+00

1.9620539E-02
2.0707984E-04
6.0328234E-081.0000000E+00

1.3141501E-02
1.4276901E-04
9.1344629E-09

1.0000000E+00
1.3574447E-02
5.2319237E-05
1.3202970E-09

Figure 13. Convergence properties of the implementation. The convergence as measured in the
residual norm (normalized to the first value) is given for every other step in the cycle. The problem
shown is Run 1 from the torsion tube of Example 7; the convergence behavior is typical of all other
simulations.
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