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Useful Definitions

Equilibrium lattice configurations

At zero absolute temperaturg, the equilibrium configuration of a periodic atomic struetyparametrized by; is
obtained from a minimization of the potential energy¢;) with respect ta;. At non-zero absolute temperature
T, the equilibrium configuration of a periodic atomic struetis obtained from a minimization of the free energy
U(F,T), whereF is the deformation gradient.

Quasiharmonic approximation

The thermal vibrations of atoms in a lattice can be approtechly thermal vibrations about the lattice sites (straelche
by the macroscopic deformation gradidhiaccording to Cauchy-Born) if the temperatdreof the system is suffi-
ciently low. The partition function can then be approxinabig

wherew? are then generalized eigenvalues of
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whereM and K are then x n mass and stiffness matrices of thedegree of freedom system, respectively and
where theg; describe the deviation of the atomic positions from thedatsites (stretched k). The quasiharmonic
approximation of the free energy thus takes the form

Uon(F,T) = —kT log(Zgn(F,T)) = Uy(F) — nkT log(2nkT) + szn:log(wr(F)), 3)

r=1

and the resulting stress-strain relationlis {s the reference volume of the system)
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The Morse potential
Qualitatively somewhat similar to the Lennard-Jones pitagrihe Morse potential has the form
(;5(7’) =, |:672ao(r/r071) _ 2€7ao(r/rofl)j| ; (5)

whereu, is the energy at distaneg anda, is a measure for the linear stiffness aroupdsee Figure 1).

Useful trigonometric identities
The following trigonometric identities might be useful fitne homework problem
sin(a + ) = sin(a) cos(5) + sin(5) cos(a), sin(a — ) = sin(«) cos(3) — sin(fB) cos(a),
_ —ogin2 (&
1 — cos(a) = 2sin (2) ,
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Figure 1: The Morse potential.

Problem 1 - Linear chain with fixed boundary conditions
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Figure 2: Reference and current configuration of a chain fivitd boundary conditions.

Consider a one-dimensional linear chain of like atoms. Rickpresentative “interior region” consisting of N
atoms and adjacent regiofisE' that contain the atoms interacting with the chain (see Ei@)r Let the positions in
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the reference configuration (stress frée= 0K) be denoted by
XJ = jb07 (6)

whereb, is the lattice parameter andhe number of the atom. For dimensional reasons, each atasségiated with
a reference volume df, = b2. Let the position in the current configuration (deform&d# 0) be denoted by

T =12+ q; = FX;+q; = Fboj + q;, %

wherex; are the lattice sites stretched by the one-dimensionaraefiton gradient” (according to Cauchy-Born)
and where the; denote the deviation caused by thermal vibration. Atome lraassesn and their interaction is
described by pair potentialgr), wherer is the respective interatomic distance. Throughout theutations, assume
that the atoms interact only with their nearest neighbodsthat atoms inf, £ do not thermally vibrate.

The goal of this exercise is to derive the quasiharmonic @ppration of the free energy¥,,(F,T"), and to
calculate an approximation of the thermal expansion andheenoelastic stress-strain relation from it. To do so,
carry out the following steps:

a) Derive the potential enerdy(b,) of the reference lattice and determingfrom ¢(r).

b) Derive an expression for the potential enetgy; ¢;) in the current configuration. Carry out a Taylor expansion
up to second order abogf = 0 and compute all terms in terms ofr).

c) Derive the equations of motion of the atoms, i), by assuming harmonic vibrations abauit= 0.

d) Insert the ansatz
qj(t) = a;j cos(wt) anda; = Bcos(kz;) + Csin(kz;), (8)

wherew is the angular frequency aridthe wave number. Use the boundary conditions to extractrmdtion
on B andC' and derive the dispersion relation

w? = M(l —coskFb,) = 4¢"(Fbo) sin? <kao> 9
m m 2
using the given trigonometric identities.
e) Use the fixed boundary conditions, the orthogonality @
QrjQsj = Ops (10)

(wherej is the atom number and s denote modes of vibration) and the dispersion relation to fire N
wavenumbers,., the N eigenfrequencies, and the correspondiny eigenvectors.,; (including constantss,.
andC,) again using the given trigonometric identities.

f) Decouple the motions of the atoms by transforming to themad modes and derive the partition function of the
linear chainZ (F,T).

g) Compute the free energy
U(F,T) = —kTlog (Z(F,T)). (11)

h) Explain how to compute the thermal expansion of the katfi{T").

i) Derive an expression for the stress using
1 0V(F,T)

P =
Vo OF

: 12)
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Homework 1 - Linear chain with periodic boundary conditions
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Figure 3: Reference and current configuration of a chain pattiodic boundary conditions.

Again consider a one-dimensional linear chain of like atoRisk a representative “interior regiori”consisting
of N = 101 atoms and adjacent regiofAsE that contain the atoms interacting with the chain (see Ei@)r Let the
positions in the reference configuration (stress fiee; 0K) be denoted by

Xj = jbo, (13)

whereb, is the reference lattice parameter anthe number of the atom. For dimensional reasons, each atom is
associated with a reference volumelgf = b3. Let the position in the current configuration (deform&ds 0) be
denoted by

Tj:l‘j+Qj:FXj+Qj:Fboj+Qj, (14)

wherez; are the lattice sites stretched by the one-dimensionakhefiion gradient” (according to Cauchy-Born)
and where the; denote the deviation caused by thermal vibration. The atwawe masses: = 10~2°kg and their
interaction is described by the so-called Morse potential

¢(T> = U, |:€_2ao(7'/7'o_1) _ 26—0.0(7‘/7‘0—1)] , (15)

whereu, = 9-107'"J, a, = 0.05 andr, = 10~?m are material parameters ands the respective interatomic
distance. Throughout the calculations, assume that timesatderact only with their nearest neighbors and that atoms
in I, E move according to periodic boundary conditions, &= ¢y andgyi+1 = q1.

The goal of this exercise is to derive the quasiharmonic @ppration of the free energy?,;,(F,T'), and to
calculate an approximation of the thermal expansion andhtenmoelastic stress-strain relation from it. To do so,
carry out the following steps:
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a) Derive the potential enerdy(b, ) of the reference lattice and determine the numerical valg loy minimizing
it.

b) Derive an expression for the potential enetdyf’; ¢;) in the current configuration (remember to add only half
the energy betweehand!, E as the other half belongs to “the next chain”). Carry out adiagxpansion up
to second order aboy} = 0 and compute all terms of the stiffness matfix; using¢(r) (and not substituting
the Morse potential). Make sure you get the right compon&its and K v .

c) State the equations of motion of the atoms by assumingdwEowibrations aboug; = 0.

d) Now solve the generalized eigenvalue problem derived imumerically (for/' = 1). Look at the first eigen-
values and plot the corresponding eigenmodes. What do yanas What does the eigenmode corresponding
to the lowest eigenvalue stand for physically? Why didn’s tttme up in the case of the fixed boundary condi-
tions? Should this also be summed over when calculatingahéipn function and the free energy?

e) By looking at the eigenmodes, one can easily see they haveltowing structure:

By cos (51 ) for i odd
Q5 = Za.] = {17"'7N}7 (16)

i [ T (G) i
B; sin (%) for i even

where theB; are chosen such that the; are normalized. Of course the pairssad andcos functions corre-
sponding to equal eigenvalugescan be flipped. What are thus th& — 1)/2 wavevectorg:, corresponding to
the (IV — 1)/2 pairs of eigenvalues,.? Plot the dispersion relation for the reference configonafie. F' = 1.

f) Compute the free energy for a givéh(keep in mind that the eigenvalue problem has to be solved &oreeach
choice ofF)

U(F,T) = Uy(F) — nkT log(2nkT) + kT ) _ log(w, (F)) 17)
r=1
and remember to only sum over eigenvalues representing#heibration.
g) Compute the thermal expansion of the lattie¢]"), for the given interaction potential by minimizing(F, T')

for given a7 (using, e.g.fminsearch). Plot the resulting values farK' < 7' < 1000K (with incements of
AT = 10K).

h) Calculate the stress-strain relation numerically using

1 OU(FT) 1 W(F+AF,T) - W(F,T)

P(F’T):VO oF v, AF

(18)

and useAF = 0.00001. Make a mesh plot oP(F,T) for 0K < T < 1000K and0.99 < F < 1.01
using increments oA7 = 10K andAF = 0.0001. In the same plot, plot the functioR,(F,T) = 0. What
geometrically defines the thermal expansion in this plot?

Questions/Comments/Suggestions?Felix Hildebrand - CLA H23.1 - 044/632-7755 - felixhi@etbl.



