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Useful Definitions

Simple lattice

A simple lattice or Bravais lattice is an infinite set of points ind-dimensional space generated by the translation of a
single pointo throughd linearly independent lattice vectorsai, i.e.

L(ai,o) = {x |x = o + ℓiai, ℓi ∈ Z, i = 1, .., d} . (1)

Multilattice

A multilattice or n-lattice is defined as the superposition ofn Bravais lattices that have the same lattice vectors and
that are shifted byn − 1 shiftsp. For a2 − lattice one gets

L(ai,o,p) = L(ai,o)
⋃

L(ai,o + p). (2)

Cauchy-Born Hypothesis for simple lattices

The Cauchy-Born hypothesis assumes that lattice vectors ina deformed crystalline solid behave like line elements and
are deformed according to the deformation gradient, i.e.

ai = Fao
i , (3)

whereao
i are the lattice vectors in the reference configuration.

Cauchy-Born Hypothesis for multilattices

As opposed to the simple lattice, deformations in a multilattice are not completely described by the deformation of the
lattice vectors: The deformation of the shiftspj also has to be specified. However, these shifts are not linkedto the
macroscopic deformation and constitute internal degrees of freedom of the lattice. They are hence determined from
energy minimization, i.e.

ai = Fao
i (as for the simple lattice),

p from min
p

Ψ(ai,p), (4)

whereΨ(ai,p) is the Helmholtz free energy of the lattice that coincides with its potential energy at zero temperature.

Problem 1 - Fitting of Lennard-Jones parameters for Xenon

Consider Xenon at a very low temperature,t ≈ 0K. From measurements you know that Xenon exhibits anfcc
structure , that the lattice parameter is given byL = 6.13 Å and that the cohesevie energy of the lattice is given by
0.17eV/atom. Assuming the interactions between Xenon atoms can be modelled using Lennard-Jones potentials of
the form

u(r) = uo

[

(σ

r

)12

−
(σ

r

)6
]

(5)

determine the parametersσ and uo from the measured values. To do so analytically, consider only next-nearest
neighbors when computing the potential energy.
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Figure 1: The parametrization of the 2D diatomic lattice.

Homework 1 - Deformation of lattice with internal shift

Consider a diatomic lattice consisting of two atomic species A andB. Interactions between atoms are governed by
Lennard-Jones potentials of the form

uαβ(r) = uo
αβ

[

(σαβ

r

)12

−
(σαβ

r

)6
]

(6)

where the interaction are given byuo
AA = uo

BB = 1Uo, uo
AB = 10Uo (this is unrealistic but amplifies the effect we

are interested in) andσAA = σBB = 1σo, σAB = 0.45σo.
Goal of the exercise is to see how the minimization of the internal shift influences the potential energy of the lattice

during uniform expansion. To do so, carry out the following steps, preferebly in MATLAB:

a) Parametrize the diatomic lattice (i.e. the lattice vectors ai and the shiftp) as shown in Figure (1) using five
parameters, i.e. compute

ai = ai(a, b, c, α, γ) andp = p(a, b, c, α, γ). (7)

b) Set up a functionpot.m that calculates the potential energy of a unit cell (i.e. anA and aB atom) from given
lattice vectorsa1 anda2 and the shiftp taking into account all interactions of atoms that are in

{x |x − xo = ℓ1a1 + ℓ2a2, |ℓ1|, |ℓ2| ≤ 6} , (8)

wherexo are the members of the unit cell under consideration.

c) Usefminsearch (in MATLAB) to find minimum energy configurations of the lattice. fminsearch therefor requires
you to pass it a starting vector, i.e. an initial guess for(a, b, c, α, γ). Carry out minimizations for the following
starting configurations:
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A) (a, b, c, α, γ) = (1.0, 1.0, 0.5, 1.0, 0.5)

B) (a, b, c, α, γ) = (1.0, 1.0, 1.0, 1.0, 0.5)

C) (a, b, c, α, γ) = (1.0, 1.0, 0.5, 1.0, 1.0)

D) (a, b, c, α, γ) = (1.0, 2.0, 0.5, 0.5, 0.0)

where all angles are given in radians. Plot all resulting configurations using the fileplotLattice.m that is available
online. Do the different results correspond to different phases? Compare both plots and resulting energies.
Now chose the first computed minimum configuration as the reference configuration, i.e. setao

i andpo to the
computed minimizers.

d) The material in the obtained reference configuration is now subjected to a uniform dilatation according to

Fij(λ) =

(

λ 0
0 λ

)

. (9)

Calculate and plot the energyU(F(λ)) of the deformed lattice for0.95 < λ < 1.2 using steps of∆λ = 0.001.
To do so,

A) assume thatboth theai and p deform according to the Cauchy-Born hypothesis.

B) assume thatonly theai deform according to the Cauchy-Born hypothesis and determinep for each value
of λ from a minimization of the energy with respect top(c, γ), i.e. with respect to(c, γ).

Compute and plot both energiesU(F(λ)) overλ in the same figure. Also generate plots of the twoc(λ) that
are obtained by the two methods as well as theγ(λ). To see what effects cause the deviations from “global
Cauchy-Born”, plot the lattice configurations with minimizedp for λ = 0.95 andλ = 1.2.

Questions/Comments/Suggestions?Felix Hildebrand - CLA H23.1 - 044/632-7755 - felixhi@ethz.ch
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