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Useful Definitions

Simple lattice

A simple lattice or Bravais lattice is an infinite set of points id-dimensional space generated by the translation of a
single pointo throughd linearly independent lattice vectass, i.e.

L(a;,0) ={x|x=0+la;, (;€Z, i=1,.d}. 1)

Multilattice

A multilattice or n-lattice is defined as the superpositionoBravais lattices that have the same lattice vectors and
that are shifted by, — 1 shiftsp. For a2 — lattice one gets

L(a;,0,p) = L(a;,0) | JL(a;,0+p). (2)

Cauchy-Born Hypothesis for simple lattices

The Cauchy-Born hypothesis assumes that lattice vectarsli@iormed crystalline solid behave like line elements and
are deformed according to the deformation gradient, i.e.

a; = Fay, 3)

wherea are the lattice vectors in the reference configuration.

Cauchy-Born Hypothesis for multilattices

As opposed to the simple lattice, deformations in a mulidatare not completely described by the deformation of the
lattice vectors: The deformation of the shifis also has to be specified. However, these shifts are not litkéue
macroscopic deformation and constitute internal degréé®edom of the lattice. They are hence determined from
energy minimization, i.e.

a, = Fa? (asforthe simple lattice),

p from min¥(a;,p), (4)
p

whereV¥ (a;, p) is the Helmholtz free energy of the lattice that coincideths potential energy at zero temperature.

Problem 1 - Fitting of Lennard-Jones parameters for Xenon

Consider Xenon at a very low temperatutex~ 0K. From measurements you know that Xenon exhibitfcan
structure , that the lattice parameter is givenlby= 6.13 A and that the cohesevie energy of the lattice is given by
0.17eV/atom. Assuming the interactions between Xenon atoms candaelied using Lennard-Jones potentials of

the form
= [(2)" (2] ©

determine the parametessand u, from the measured values. To do so analytically, considéy next-nearest
neighbors when computing the potential energy.
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Figure 1: The parametrization of the 2D diatomic lattice.

Homework 1 - Deformation of lattice with internal shift

Consider a diatomic lattice consisting of two atomic specieand B. Interactions between atoms are governed by
Lennard-Jones potentials of the form

0 %) e (%)6 6
o) = | (%2 r ©
where the interaction are given by, , = vz = 1U,, u% g = 10U, (this is unrealistic but amplifies the effect we
are interested in) anda4 = o = 1o,, 045 = 0.450,,.

Goal of the exercise is to see how the minimization of therirgkshift influences the potential energy of the lattice
during uniform expansion. To do so, carry out the followiteps, preferebly in MATLAB:

a) Parametrize the diatomic lattice (i.e. the lattice vexto and the shiftp) as shown in Figure (1) using five
parameters, i.e. compute
a; = ai(aabv Cvaa’y) andp = p(avbv C,Oé,’}/). (7)

b) Set up a functiompot.m that calculates the potential energy of a unit cell (i.e.4aand aB atom) from given
lattice vectorsa; anda, and the shifip taking into account all interactions of atoms that are in

{x|x —x, = lia; + lray, |(1],|l2] <6}, 8)
wherex, are the members of the unit cell under consideration.

¢) Usefminsearch (in MATLAB) to find minimum energy configurations of the laté. fminsearch therefor requires
you to pass it a starting vector, i.e. an initial guess(faw, ¢, «,v). Carry out minimizations for the following
starting configurations:
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A) (a,b,c,a,v 1.0,1.0,0.5,1.0,0.5

) ( ) = ( )
B) (a,b,c,a,v) = (1.0,1.0,1.0,1.0,0.5)
C) (a,b,¢,a,y) = (1.0,1.0,0.5,1.0,1.0)
D) (a,b,c,a,7) = (1.0,2.0,0.5,0.5,0.0)
where all angles are given in radians. Plot all resultindigamations using the filplotLattice.mthat is available
online. Do the different results correspond to differenagds? Compare both plots and resulting energies.

Now chose the first computed minimum configuration as theeef® configuration, i.e. saf andp® to the
computed minimizers.

d) The material in the obtained reference configuration v8 sigbjected to a uniform dilatation according to

Fi»(/\):<é 2) )

Calculate and plot the ener@y(F()\)) of the deformed lattice fod.95 < A < 1.2 using steps ofAA = 0.001.
To do so,
A) assume thaboth thea, and p deform according to the Cauchy-Born hypothesis.
B) assume thatnly thea; deform according to the Cauchy-Born hypothesis and determior each value
of X from a minimization of the energy with respectyiéc, ), i.e. with respect tdc, ).

Compute and plot both energi€gF()\)) over X in the same figure. Also generate plots of the w{®) that
are obtained by the two methods as well as4l&). To see what effects cause the deviations from “global
Cauchy-Born”, plot the lattice configurations with miniraip for A = 0.95 and\ = 1.2.

Questions/Comments/Suggestions?Felix Hildebrand - CLA H23.1 - 044/632-7755 - felixhi@etbf.



