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Useful Definitions

Time Averages

The time average of a phase functionF (q,p) is obtained from

F̂ = lim
t→∞

1

t

∫ t

0

F (q(τ),p(τ)) dτ, (1)

whereq,p are shorthand forqi andpi and similarly dq = dq1dq2... and dp = dq1dq2..., i ∈ {1, ..., N}, whereN is
the number of total degrees of freedom of the given system.

Phase Averages

The phase average of a phase functionF (q,p) is obtained from

F̄ =

∫
Γ

F (q,p)ρ(q,p) dq dp, (2)

whereΓ refers to the associated phase space and whereρ(q,p) is the distribution function of the given system with
the properties

ρ(q,p) ≥ 0,

∫
Γ

ρ(q,p) dq dp = 1. (3)

Ergodicity

For an ergodic system, the values of time and phase averages coincide independent of the considered phase function
F (q,p), yielding

F̂ = F̄ ∀ F (q,p). (4)

Conservation of the distribution function ρ along a trajectory

The distribution functionρ(q,p) of a Hamiltonian system is conserved along trajectoriesy(t),

dρ

dt
= 0 ony ∀t. (5)

Although this holds for time-dependent distribution functions as well, we are specifically interested in equilibrium
situations. We define equilibrium by

∂ρ

∂t
= 0 (6)

and will thus assume only systems with time-independent distribution functions such thatρ is locally constant. A
family of distribution functions satisfying both (6) and (5) is ρ(q,p) = ρ(H(q,p)).

Conservation of the HamiltonianH along a trajectory

For general Hamitonian systems, the variation of the Hamiltonian along a trajectoryy(t) is equal to its local variation,
i.e.

dH

dt
=

∂H

∂t
ony ∀t. (7)

For isolated systems, the Hamiltonian is time-independent, hence

dH

dt
= 0 ony ∀t. (8)
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Metrical Decomposability of S(E)

A constant energy hypersurfaceS(E) is said to bemetrically decomposable if it can be divided into (at least) two
open setsS1 andS2 with S1 ∩ S2 = ∅ andS1 ∪ S2 = S(E) such that any trajectory starting inS1 will stay there∀t
and any trajectory starting inS2 will stay there∀t. If S(E) is notmetrically decomposable it is said to bemetrically
undecomposable.

Homework 1 - Undecomposability and time averages
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Figure 1: Two weakly coupled one-dimensional harmonic oscillators.

Consider two harmonic oscillators with massesm = 1 and stiffnessesK = 10 that are weakly coupled by a
spring of stiffnessk << K. The positions of the oscillators are described byq1 andq2 whereqi = 0 refers to the
undeformed state. The initial conditions of the system are solely described by the positions, the initial momenta are
zero, i.e.pi(t = 0) = 0.

a) Derive the equations of motion for the system fork = k1 = 0, k = k2 = 0.1 andk = k3 = 1 for initial
conditionsq1(t = 0) = 1 andq2(t = 0) = 0.

b) Calculate the period T of the (combined) system. Generatetwo (seperate) plots ofq1(t) andq2(t) as well as two
(seperate) three-dimensional plots of (q1(t),p1(t),t) and (q2(t),p2(t),t) for 0 ≤ t ≤ T .

c) Describe the constant energy surfaceS(E) of the system for a given energyE in the phase space spanned by
(q1, q2, p1, p2). For which of the values ofk used in a) is the trajectory covering all ofS(E)?

d) For values ofk 6= 0, the system is metrically undecomposable. However, there are two setsS1 andS2, S1, S2 ⊂
S(E), for which trajectories starting in each one of them will stay there forever. What are these sets? Plot two
trajectories starting in both sets for0 ≤ t ≤ T as in b). How are these related to the eigenmodes of the system
(see a))? Why does this comply with the definition of undecomposability given above?

e) Choosing an initial condition such thatE = (k + K)/2 and(q1(t = 0), q2(t = 0), p1(t = 0), p2(t = 0)) /∈
S1∪S2 from c), compute the time averages of the square displacement of the first massq2

1 , the square momentum

of the second massp2
1, the kinetic energy of the systemp

2

1
+p

2

2

2m
and its potential energy1

2
K(q2

1+q2
2)+ 1

2
k(q2−q1)

2

using (1) for bothk2 andk3. Recall that the solution in a) assumed zero initial momenta. Does the integration
of the time avergage have to be carried out fort → ∞?
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