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Useful Definitions

Equations of Motion in Alternate Coordinates

The linearized equations of motion for vibrations of atoms about the equilibrium positions in a lattice are given by
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whereα, β = {1, 2, 3} denote the coordinate directions,A,B = {1, ..., NC} the unit cell numbers out of theNC =
N3 unit cells in the interior region/supercell andr, n = {1, ..., s} the atom numbers inside the unit cell withs atoms
each in total. The total degrees of freedom of the system are thusn = 3sNC .
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whereU(F,q) is the potential energy of the (stretched) system with shifts determined by its minimization.

Complex Ansatz

To solve the equations of motion (1) taking advantage of the structure of the problem, we assume harmonic vibrations
of the atoms and chose a complex wave ansatz of the form
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, (3)

whereω is the eigenfrequency,k the wave vector andRA the vector pointing to the local origin of unit cellA.

Unitcell and Supercell Periodicity

Unit cell periodicity and the resulting indistinguishability of lattice sites allows us to set

A = 1 and RA = 0 (4)

without loss of generality.
Super cell periodicity can be expressed by
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in each periodicity direction and yields admissible valuesof the wave vectork:
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wherea, b, c are three of the six lattice parameters,N is the number of unit cells in each direction of the super celland
n1, n2, n3 = {−(N − 1)/2, .., 0, .., (N − 1)/2} (this producesω(k) in the familiar Brillouin).
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Resulting Generalized Eigenvalue Problem

The resulting generalized eigenvalue problem is
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whereM(αr)(βn) is the mass matrix andD(αr)(βn) is the so called dynamical matrix.
For a given wave vectork one can thus determine the corresponding3s eigenfrequencies from

det
(
Mω2 − D(k)

)
= 0. (8)

Dynamical Matrix for Pair Potentials

The dynamical matrix has dimensions3s × 3s and can be written in (non-overlapping) block form as
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wheres is the number of atoms per unit cell.
If the interactions between atoms are governed by pair potentials φ(r), each individual block entry is obtained

from
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wherexA
a is the position vector of atoma in unit cellA without thermal vibrations.

Phonon Programm Headers

• [energy,force,stiffness] = morse(V0,a0,r0,r)

Returns the function value (energy), the first (force) and second derivative (stiffness) of the Morse potential with
parametersV0, a0, r0 at function valuer.

• [a,b,c,alpha,beta,gamma] = get_cell_3D(a1,a2,a3)

Calculates the six lattice parameters from the three (column) lattice vectors.

• [a1,a2,a3] = get_lattice_vec_3D(a,b,c,alpha,beta,gamma)

Inverse of the previous function.
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• out_basis_3D(bv)

Prints basis vectors that are stored as columns of a3 × s matrix bv, wheres is the number of basis vectors (and
thus the number of atoms per unit cell).

• out_cell_3D(a,b,c,alpha,beta,gamma)

Prints lattice parameters.

• out_lattice_3D(a1,a2,a3)

Prints lattice vectors.

• plot_lattice_3D(a1,a2,a3,bv,m,name)

Plots the lattice with (column) lattice vectorsa1, a2 anda3 and the3× s matrix bv formed by the column basis
vectors where the1× s mass vectorm is used to scale the atom representations relative to each other. The string
name contains the name to be displayed as header of the figure. To plot deformed lattices, pass inFa1, Fa2 and
Fa3 and the corresponding energy-minimizingbv.

• [energy]=lattice_energy_3D(a1,a2,a3,bv,F,V0,a0,r0,N)

Returns theenergy per unit cell of a lattice described by lattice vectorsa1, a2 anda3 and the3 × s matrix bv
formed by the column basis vectors, stretched by deformation gradientF, with interactions described by the
s × s matricesV0, r0 anda0 using a parallelepipetic super cell withN unit cells in each direction. To calculate
the energy of the reference configuration, simply choseF = I.

• [a1,a2,a3,bv] = equil_lattice_3D(a1,a2,a3,bv,V0,a0,r0,N)

Returns (column) lattice vectorsa1, a2 anda3 and the3 × s matrix bv formed by the column basis vectors of
the closest local minimum energy configuration to the supplied guess given thes × s interaction matricesV0,
r0 anda0 using a parallelepipetic super cell withN unit cells in each direction.

• [bv] = affine_equil_lattice_3D(a1,a2,a3,bv,F,V0,a0,r0,N)

Returns the3×s matrixbv formed by the column basis vectors minimized for a deformation of a reference lattice
with lattice vectorsa1, a2 anda3 with deformation gradientF whose interactions are described by interaction
matricesV0, r0 anda0 and for which a parallelepipetic super cell withN unit cells in each direction is used.

• INCOMPLETE:

[Dmat,M]=dynam_3D(a1,a2,a3,bv,F,V0,a0,r0,m,k,N)

Returns the3s× 3s dynamic matrixDmat for a given wave vectork and the3s× 3s mass matrixM for a lattice
desribed by (column, reference) lattice vectorsa1, a2 anda3 and the3×s matrixbv formed by the (minimized!)
column basis vectors, stretched by the corresponding deformation gradientF, interaction matricesV0, r0 and
a0, the1 × s mass vectorm and using a parallelepipetic super cell withN unit cells in each direction.

• INCOMPLETE:

phonon_2lattice_3D

Main file giving the structure of the problem.
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Homework 1 - Dispersion in a 3D Two-Lattice

Given is a two-lattice in a three-dimensional setting with massesm1 = 44amu andm2 = 33amu. Interactions are
governed by Morse potentials, where the following2 × 2 matrices contain all necessary interaction parameters (i.e.
[ro]ij is thero parameter for the interaction between ani and aj atom):

[ro]ij =

(
3.2 2.7
2.7 3.2

)

Å, [Vo]ij =

(
3.0 3.0
3.0 3.0

)

eV, [ao]ij =

(
5.0 5.0
5.0 5.0

)

. (11)

The lattice is parametrized by six parameters (three lengths a, b, c and three anglesα, β, γ, whereα is the angle
betweena2 anda3, β is the angle betweena1 anda3 andγ is the angle betweena1 anda2, ). The three lattice vectors
relate to them by

a1 =





a
0
0



 , a2 =


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b cos(γ)
b sin(γ)

0



 (12)

anda3 can be obtained from

a1 · a3 = cos(β)ac, a2 · a3 = cos(α)bc, a3 · a3 = c2. (13)

The shifts of atoms1 and2 in each unit cell with respect to the lattice is described using vectorsb1
i andb2

i , where

pj = bj
iFai. (14)

Without loss of generality, we choseb1
i = 0 and keep it fixed during all calculations.

To obtain the dispersion relation in the direction of all three lattice vectors, carry out the following steps:

a) Equilibrate the (unstretched, i.e.F = I) lattice by minimizing its (0K) potential energy with respect to the
lattice parameters and the shift using the startig guess

a = 3.2Å b = 3.2Å c = 3.2Å

α = π/2 β = π/2 γ = π/2

b2
1 = 0.5 b2

2 = 0.5 b2
3 = 0.5 . (15)

Plot the resulting structure, print its lattice and basis vectors and calculate its potential energy.

b) Set up a function that calculates the dynamic matrixD and the corresponding mass matrixM usingN = 11
(i.e. five neighbors in each direction).

c) Determine all3N allowable wave vectorsk that are parallel to the lattice vectorsai. For each direction, calculate
and plot the corresponding6N eigenfrequenciesω(k) in dispersion plots.

d) Now subject the lattice to a homogeneous deformation described by

F =





1 0 0
0 0.95 0
0 0 1.05



 (16)

and calculate the corresponding equilibrium lattice structure by minimizing with respect to the basis vector
b2
i . Plot the resulting configuration, print the correspondinglattice and basis vectors and calculate its potential

energy.
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e) Now modify your function such that it calculates the dynamic matrixD (the mass matrixM remains unchanged)
of thestretched lattice usingN = 11 (i.e. five neighbors in each direction).

f) Determine all3N allowable wave vectorsk that are parallel to the lattice vectorsai. For each direction, calculate
and plot the corresponding6N eigenfrequenciesω(k) in dispersion plots.

To compute the desired quantities you may use any of the functions inhw10.zip, of which all butphonon-2lattice-
3D.m anddynam-3D.m are complete. The descriptions of the headers and the input/output format can be found above.

Questions/Comments/Suggestions?Felix Hildebrand - CLA H23.1 - 044/632-7755 - felixhi@ethz.ch
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