ETH Zurich Institute for Mechanical Systems

Department of Mechanical and Process Engineering Center of Mechanics
Statistical Mechanics of Elasticity Prof. Dr. Sanjay Govindjee
Exercise 10 - Summer 2007 Felix Hildebrand

Useful Definitions

Equations of Motion in Alternate Coordinates

The linearized equations of motion for vibrations of atorbeut the equilibrium positions in a lattice are given by

()= 2w ()(D)e(?)

wherea, 5 = {1, 2,3} denote the coordinate direction$, B = {1, ..., N} the unit cell numbers out of th& =
N3 unit cells in the interior region/supercell angh = {1, ..., s} the atom numbers inside the unit cell wittatoms
each in total. The total degrees of freedom of the systemhaisait= 3sN¢.

K, ( A ) 8 ( 5 ) is the stiffness matrix defined by
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whereU (F, q) is the potential energy of the (stretched) system with skiétermined by its minimization.

Complex Ansatz

To solve the equations of motion (1) taking advantage of thestire of the problem, we assume harmonic vibrations
of the atoms and chose a complex wave ansatz of the form

o () = Re[iu gk, ©

wherew is the eigenfrequenck the wave vector anR 4 the vector pointing to the local origin of unit cell.

Unitcell and Supercell Periodicity
Unit cell periodicity and the resulting indistinguishatyilof lattice sites allows us to set
A=1 and Ru=0 (4)

without loss of generality.
Super cell periodicity can be expressed by

QQ(N];i_l)_ch(]i) (5)

in each periodicity direction and yields admissible valakthe wave vectok:

(6)
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wherea, b, ¢ are three of the six lattice parametelsjs the number of unit cells in each direction of the superaed
ny,ng,n3 = {—(N —1)/2,..,0,.., (N — 1)/2} (this producesy(k) in the familiar Brillouin).
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Resulting Generalized Eigenvalue Problem

The resulting generalized eigenvalue problem is
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whereM ,,y(sn) IS the mass matrix anB (s, is the so called dynamical matrix.
For a given wave vectdt one can thus determine the correspondingigenfrequencies from

det (Mw?® — D(k)) = 0. (8)

Dynamical Matrix for Pair Potentials

The dynamical matrix has dimensiodis x 3s and can be written in (non-overlapping) block form as

Dy Dy -+ Dy,
Dy Do

D = : ; )
Dsl Dbs

wheres is the number of atoms per unit cell.
If the interactions between atoms are governed by pair fiatem(r), each individual block entry is obtained
from

Ne=N?3

i . D VIV
Dyy= Y eRek g | x, = xP 1| | (3% — 7)) = (VD3
=1 —
+ oy |0 [ Ik = X2 (7 = ) + 0" (w3 | ¢ (10)

w

wherex?! is the position vector of atom in unit cell A without thermal vibrations.

Phonon Programm Headers

e [energy,force,stiffness] = norse(V0,a0,r0,r)
Returns the function valuexfergy), the first force) and second derivativet{ffness) of the Morse potential with
parameter®/0, a0, rO at function value.

e [a,b,c,alpha, beta, gamma] = get_cell _3D(al, a2, a3)
Calculates the six lattice parameters from the three (co)uattice vectors.

e [al,a2,a3] = get _lattice vec_3D(a,b,c, al pha, bet a, ganma)
Inverse of the previous function.
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e out_basis 3D(bv)
Prints basis vectors that are stored as columns3oka matrix bv, wheres is the number of basis vectors (and
thus the number of atoms per unit cell).

e out_cell _3a,b,c,al pha, bet a, gamma)
Prints lattice parameters.

e out lattice_3D(al, a2, a3)
Prints lattice vectors.

e plot lattice _3D(al, a2, a3, bv, m nane)

Plots the lattice with (column) lattice vecta$, a2 anda3 and the3 x s matrix bv formed by the column basis
vectors where thé x s mass vectomis used to scale the atom representations relative to ebeh dthe string
name contains the name to be displayed as header of the figure oTdgflormed lattices, pass ial, Fa2 and
Fa3 and the corresponding energy-minimizimg

e [energy]=lattice_energy 3D(al, a2, a3, bv, F, V0, a0,r0, N)
Returns thesnergy per unit cell of a lattice described by lattice vectals a2 anda3 and the3 x s matrix bv
formed by the column basis vectors, stretched by deformagradientF, with interactions described by the
s x s matricesV0, r0 anda0 using a parallelepipetic super cell withunit cells in each direction. To calculate
the energy of the reference configuration, simply cHbse I.

e [al,a2,a3,bv] = equil _lattice 3D(al, a2, a3, bv, V0, a0,r0,N)

Returns (column) lattice vectoed, a2 anda3 and the3 x s matrix bv formed by the column basis vectors of
the closest local minimum energy configuration to the s@pptjuess given the x s interaction matrice¥/0,
r0 anda0 using a parallelepipetic super cell withunit cells in each direction.

e [bv] = affine_equil lattice 3D(al, a2, a3, bv, F, V0, a0,r0, N

Returns th& x s matrixbv formed by the column basis vectors minimized for a deforamedif a reference lattice
with lattice vectorsal, a2 anda3 with deformation gradienf whose interactions are described by interaction
matricesV0, rO anda0 and for which a parallelepipetic super cell withunit cells in each direction is used.

e INCOMPLETE:
[ Dmat , M =dynam 3D( al, a2, a3, bv, F, VO, a0, r0, m k, N)

Returns th&s x 3s dynamic matrixDmat for a given wave vectdk and the3s x 3s mass matriM for a lattice

desribed by (column, reference) lattice vectatsa2 anda3 and the3 x s matrixbv formed by the (minimized!)
column basis vectors, stretched by the corresponding mhetton gradient, interaction matrice¥0, rO and

a0, thel x s mass vectom and using a parallelepipetic super cell wiNtunit cells in each direction.

e INCOMPLETE:
phonon_2l attice_3D

Main file giving the structure of the problem.
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Homework 1 - Dispersion in a 3D Two-Lattice

Given is a two-lattice in a three-dimensional setting withssesn; = 44amu andmsy = 33amu. Interactions are
governed by Morse potentials, where the followihg 2 matrices contain all necessary interaction parameters (i.
[0 is ther, parameter for the interaction betweeniaand aj atom):

3.2 2.7\ 3.0 3.0 5.0 5.0
Irelis = ( 2.7 3.2 )A’ Volis = < 3.0 3.0 >"’V’ laclis = ( 5.0 5.0 ) ' (D

The lattice is parametrized by six parameters (three length, ¢ and three angles, 3,~, wherea is the angle
betweern, andas, (3 is the angle betweem, andas and- is the angle betweem, andas, ). The three lattice vectors
relate to them by

a bcos(v)
ag=| 0 |, as = | bsin(y) (12)
0 0
andas can be obtained from
a; - ag = cos(f)ac, as - a3 = cos(a)be, az-ag = 2. (13)

The shifts of atomd and2 in each unit cell with respect to the lattice is describedigsiectorsh} andb?, where
p; = b!Fa;. (14)

Without loss of generality, we chosg¢ = 0 and keep it fixed during all calculations.
To obtain the dispersion relation in the direction of allehiattice vectors, carry out the following steps:

a) Equilibrate the (unstretched, i.& = I) lattice by minimizing its (K) potential energy with respect to the
lattice parameters and the shift using the startig guess

a=32RA b=32A c=32A
a=m/2 B=m/2 y=m/2
=05 b2=05 b2=05 . (15)

Plot the resulting structure, print its lattice and basisters and calculate its potential energy.

b) Set up a function that calculates the dynamic mdbiand the corresponding mass mathik using N = 11
(i.e. five neighbors in each direction).

c) Determine alB NV allowable wave vectork that are parallel to the lattice vecters For each direction, calculate
and plot the correspondir@gV eigenfrequencies(k) in dispersion plots.

d) Now subject the lattice to a homogeneous deformationritestby

1 0 0
F=[0 095 o0 (16)
0 0 1.05

and calculate the corresponding equilibrium lattice strecby minimizing with respect to the basis vector
bZ. Plot the resulting configuration, print the correspondattice and basis vectors and calculate its potential
energy.
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e) Now modify your function such that it calculates the dyrmamatrix D (the mass matriI remains unchanged)
of thestretched lattice usingV = 11 (i.e. five neighbors in each direction).

f) Determine alBBV allowable wave vectork that are parallel to the lattice vectars For each direction, calculate
and plot the correspondirgV eigenfrequencies (k) in dispersion plots.

To compute the desired quantities you may use any of theinscinhw10.zip, of which all butphonon-2lattice-
3D.manddynam-3D.mare complete. The descriptions of the headers and the iyptit format can be found above.

Questions/Comments/Suggestions?Felix Hildebrand - CLA H23.1 - 044/632-7755 - felixhi@etbla.



