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Useful Definitions

Hamilton’s Equations

The HamiltonianH as a function of coordinatesqi and momentapi = miq̇i of a system is most generally defined as
the Legendre transform of its LagrangianL,

H(p,q) =
∑

k

q̇kpk − L(q, q̇). (1)

For the systems we will consider, the Hamiltonian is equal totheir total energy and can be written as

H(p,q) = K(p) + V (q), (2)

whereK(p) =
∑

i p2
i /2mi andV (q) are the system’s kinetic and potential energy, respectively. This property does

not hold necessarily in case of e.g. moving geometrical constraints or time-dependent potentials. Once the Hamiltonian
is known, the equations of motion can be obtained using

q̇i =
∂H

∂pi

, ṗi = −
∂H

∂qi

. (3)

Explicit time integration schemes for the equations of motion

Consider the equation of motion of a single particle with mass m one degree of freedomx and a (time-dependent)
force acting on it:

mẍ(t) = F (t). (4)

Given the state of the system at timet (and possiblyt − ∆t), we now look for ways to obtainxn+1 = x(t + ∆t) and
vn+1 = v(t + ∆t) wherev = ẋ.

Forward Euler

For the given problem with a linear spring, the Forward Eulerscheme is unconditionally unstable.

Variant of Newmark

Following directly from the Taylor series, an approximation of (4) is:

xn+1 = xn + ∆t · vn +
∆t2

2

Fn

m
,

vn+1 = vn + ∆t
Fn

m
. (5)

This coincides with an (unusual) Newmark’s scheme forβ = 0 andγ = 0.

Classical Verlet

A second-order approximation of (4) is:

xn+1 = 2xn
− xn−1 + ∆t2

Fn

m
,

vn =
xn+1 − xn−1

2∆t
, (6)

where the velocity is not needed for the integration and is (inconveniently) only obtained at the previous step.
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Velocity Verlet

A variation of the classical Verlet algorithm that allows anaccurate update of the velocity is given by:

xn+1 = xn + ∆t · vn +
∆t2

2

Fn

m
,

vn+1 = vn +
∆t

2

(

Fn

m
+

Fn+1

m

)

. (7)

Problem 1
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Figure 1: A particle confined between two massless springs (show in undeformed state).

Given is a rigid massm whose position is described by the coordinateq. It is bouncing back and forth one-
dimensionally between two massless springs of stiffnesseskl = 2 andkr = 3. Between the impacts with the springs
the free path of the mass has lengthL = 1 as shown in Figure 1.

a) Derive the HamiltonianH(p, q) of the system.

b) Use Hamilton’s equations to obtain the equations of motion fromH(p, q).

c) Sketchq(t) for 0 ≤ t ≤ T , whereT is one period of the system if its total energy isE.

d) Derive and sketch the trajectory of the given system in phase space if its total energy isE.

Homework 1

Consider the system treated already inProblem 1 . Download the compressed Matlab-fileshw1.zip that are an incom-
plete (one-dimensional)molecular dynamics code meant to compute and plot the time evolution of the givensystem
in two-dimensional phase space (see example given in Weiner, p. 82).

a) Place two replicas of the system atq = 0 andp = 1.25 (just setqmin = qmax = 0, pmin = pmax = 1.25,
nq = 2 andnp = 1). Use the describedVariant of Newmark for the integration of the trajectory of one of the
two particles and calculate the other’s motion usingVelocity-Verlet for nstep = 10, 000 steps up to a time of
T = 100. Store the total energy of both particles at each timestep. Plot the evolution of the energies and the
final positions of both particles att = T .

b) Now populate the phase space with a20×20 equidistant grid of replicas lying betweenqmin = 0 andqmax = 0.5
on the coordinate axis and betweenpmin = 1 andpmax = 1.5 on the momentum axis. UseVelocity-Verlet to
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calculate the evolution of the replicas forT = 15 usingnstep = 1000 steps. The initial configuration is shown
in Figure 2 (right). Plot the final configuration. The volume of the chosen ensemble should be preserved in
phase space (Liouville’s theorem).

c) Now populate the space withn = 500 equidistant replicas lying atq = 0 on the coordinate axis and between
pmin = 1 andpmax = 1.5 on the momentum axis and let them evolve forT = 1000 usingnstep = 100, 000
(You might want to let this run overnight). If your computational ressources (or your time) don’t allow this,
reducen, T andnstep accordingly. The initial configuration is shown in Figure 2 (left). Plot the final config-
uration. The whole (accessible) phase space should be uniformly covered with replicas of the system (property
of mixing, guarantees ergodicity).
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Figure 2: Initial setups for b) (left) and c) (right).

Questions/Comments/Suggestions?Felix Hildebrand - CLA H23.1 - 044/632-7755 - felixhi@ethz.ch
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