\qquad

Surface Loads

Consider a 2D problem with a boundary integral,

$$
\begin{equation*}
I=\int_{\Gamma} f(s) d s \tag{1}
\end{equation*}
$$

where $s=s_{a}$ gives the arc length location of the first node on the element via the parametric function $\left(\hat{x}\left(s_{a}\right), \hat{y}\left(s_{a}\right)\right)$ defining the boundary. The end node on the boundary segment is at $s=s_{b}$ and thus at $\left(\hat{x}\left(s_{b}\right), \hat{y}\left(s_{b}\right)\right)$. The mid-side node on the boundary segment is at $s=s_{c}$ and thus at $\left(\hat{x}\left(s_{c}\right), \hat{y}\left(s_{c}\right)\right)$. Let us assume that the correspondence to the parent domain is that this edge is mapped to parent domain nodes $3,4,7$, respectively.

To compute I, we can exploit the isoparametric map $x(\xi, \eta), y(\xi, \eta)$ to effect a change of variables from $s \in\left(s_{a}, s_{b}\right)$ to $\xi \in(-1,1)$. The primary consideration is that

$$
\begin{array}{ll}
\hat{x}\left(s_{a}\right)=x\left(\xi_{3}, 1\right) & \hat{y}\left(s_{a}\right)=y\left(\xi_{3}, 1\right) \\
\hat{x}\left(s_{b}\right)=x\left(\xi_{4}, 1\right) & \hat{y}\left(s_{b}\right)=y\left(\xi_{4}, 1\right) \\
\hat{x}\left(s_{c}\right)=x\left(\xi_{7}, 1\right) & \hat{y}\left(s_{c}\right)=y\left(\xi_{7}, 1\right) . \tag{4}
\end{array}
$$

The mapping between the s-domain and the ξ-domain that will respect these relations is simply

$$
\begin{equation*}
s=s_{a} N_{3}(\xi, 1)+s_{b} N_{4}(\xi, 1)+s_{c} N_{7}(\xi, 1) \tag{5}
\end{equation*}
$$

In this case

$$
\begin{align*}
I & =\int_{s_{a}}^{s_{b}} f(\hat{x}(s), \hat{y}(s)) d s \tag{6}\\
& =\int_{1}^{-1} f(x(\xi, 1), y(\xi, 1)) \frac{d s}{d \xi} d \xi \tag{7}
\end{align*}
$$

In this case the Jacobian of the transformation is negative which is compensated for by the inverted limits of integration - positive to negative. Alternately one can write

$$
\begin{equation*}
I=\int_{-1}^{1} f(x(\xi, 1), y(\xi, 1))\left|\frac{d s}{d \xi}\right| d \xi \tag{8}
\end{equation*}
$$

which works in all cases. Notwithstanding, most FEA programs will set up a local arclength coordinate on the element edge and map $s_{a} \rightarrow-1, s_{b} \rightarrow 1, s_{c} \rightarrow 0$. Thus the Jacobian is always positive. It should also be noted using as common result from dynamics of pointmasses, that

$$
\begin{equation*}
\left|\frac{d s}{d \xi}\right|=\sqrt{\left[\frac{d x}{d \xi}(\xi, 1)\right]^{2}+\left[\frac{d y}{d \xi}(\xi, 1)\right]^{2}} \tag{9}
\end{equation*}
$$

Thus one never needs to fix an origin for the arclength origin nor does one ever have to explicitly compute arclength positions of points on the surface.

