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Notes on 1D isoparametric elements

1 Isoparametric Concept

The isoparametric concept in one-dimension is a method of standardizing the necessary
computations to build the stiffness matrix and the righthand side forcing vector:

keij =

∫
Ωe

dN e
i

dx
AE

dN e
j

dx
dx (1)

f e
i =

∫
Ωe

N e
i b dx . (2)

Here N e
i (x) is the shape function. In the basic set up, one uses Lagrange interpolation

polynomials for these functions and the unknown uh(x) =
∑

i u
h
iN

e
i (x) for x ∈ Ωe.

In the isoparametric setting we first define shape functions over the fixed parent domain
[−1, 1]. These functions are denoted as Ni(ξ) and are determined by way of the Lagrange
interpolation formulae applied to the parent element. In the parent element the nodes are
always equally spaced. To be able to evaluate (1) and (2) we need, however, N e

i (x). In
the isoparametric setting these are defined by postulating a connection between the parent
element and the physical element. The connection is known as the isoparametric map,
xe(ξ); we place the superscript e on the x to remind us that the mapping is element-by-
element. Graphically the map is simply a point mapping from [−1, 1] to Ωe; see Fig. 1 for
the quadratic isoparametric mapping case. Mathematically, the isoparametric map for an
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Figure 1: Isoparametric mapping, x(ξ), for the quadratic element.
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element e is defined by the relation

xe(ξ) :=
∑
i

xeiNi(ξ) . (3)

The requirement on the mapping is that it be one-to-one and hence invertible. For us this
can be represented by the requirement je := dxe/dξ > 0 for ξ ∈ (−1, 1). With (3) defined
we can now define the shape functions over the physical domain as

N e
i (xe) = Ni(ξ(x

e)) = Ni(ξ) ◦ ξ(xe) . (4)

Remarks

1. Note that (4) employs the inverse of the isoparametric map, hence the earlier statement
that the map needs to be invertible.

2. If the isoparametic map turns out to be linear for a particular element, then shape
functions (in (4)) over the physical element turn out to just be our original Lagrange
polynomial shape functions. However is the mapping is not linear, then the shape
functions in (4) are slightly different.

3. In the case where the shape functions over the physical element are no longer Lagrange
polynomials, the primary requirement for our error estimates to still hold is that they
be able to exactly represent arbitrary linear functions over a single element (when
dealing with problems with at most first derivatives in the weak form). This is often
call the completeness requirement (for problems with single derivatives in the weak
form).

4. Observe that the unknown field over a single element is uh(xe) =
∑

i u
h
iN

e
i (xe). When

parametrized over the parent element this expression becomes uh(ξ) =
∑

i u
h
iNi(ξ),

which has the exact same form as (3). This is the origin of the terminology: isoparametric.
The parameterization of the geometry and unknown field is the same.

1.1 Consequence

If we use the relations outlined above and chase through the chain rule we come to the final
expressions

keij =

∫
[−1,1]

dNi

dξ
(ξ)AE

dNj

dξ
(ξ)

1

je
dξ (5)

f e
i =

∫
[−1,1]

Ni(ξ)b j
e dξ . (6)

All the entries are standard/uniform for all elements. The element geometry is completely
contained in the Jacobian: je.
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1.2 Example: Linear Isoparametric Element

Consider a generic linear element with nodes at xe1 and xe2. The isoparametric shape functions
over the parent domain are given by

N1(ξ) =
1− ξ

2
N2(ξ) =

1 + ξ

2
(7)

and the shape function derivatives are given by

dN1

dξ
(ξ) = −1

2

dN2

dξ
(ξ) =

1

2
. (8)

The element Jacobian is given by

je =
dxe

dξ
= xe1

dN1

dξ
(ξ) + xe2

dN2

dξ
(ξ) =

xe2 − xe1
2

=
he

2
, (9)

where he is the physical length of the element. Assuming that b and AE are constants, this
delivers the result that for all elements

keij =
AE

he

[
1 −1
−1 1

]
(10)

f e
i =

bhe

2

(
1
1

)
. (11)

1.3 Example: Quadratic Isoparametric Element

Consider a quadratic isoparametric element with nodes at xe1, xe2 = (xe1 +xe3)/2 and xe3. Note
the uniform spacing of the physical nodes should give us a linear isoparametric map. (In the
next example we will treat the case where the physical nodes are not uniformly spaced.) In
this case the nodes in the parent domain are located at -1, 0, and 1. The resulting shape
functions over the parent domain are

N1(ξ) =
1

2
ξ(ξ − 1) N2(ξ) = (1− ξ)(1 + ξ) N3(ξ) =

1

2
ξ(ξ + 1) . (12)

The derivatives of the shape functions are

dN1

dξ
= ξ − 1/2

dN2

dξ
= −2ξ

dN3

dξ
= ξ + 1/2 . (13)

Using the given (uniform) nodal spacings, the isoparametric map is linear:

xe(ξ) =
3∑

i=1

xeiNi(ξ) = xe1
1

2
ξ(ξ − 1) +

xe1 + xe3
2

(1− ξ2) + xe3
1

2
ξ(ξ + 1)

=

(
xe1

1

2
− xe1 + xe3

2
+ xe3

1

2

)
ξ2 +

xe3 − xe1
2

ξ +
xe1 + xe3

2

=
he

2
ξ +

xe1 + xe3
2

(14)
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Plugging in we find

keij =
AE

3he

 7 −8 1
−8 16 −8

1 −8 7

 (15)

f e
i =

bhe

3

 1/2
2

1/2

 . (16)

Remarks

1. In these two examples the isoparametric map is linear and thus the resulting (physical
domain) shape functions are just the Lagrange shape functions.

1.4 Example: Quadratic Isoperimetric Shape Functions

To appreciate the last remark, consider the case of xe1 = 0.0, xe2 = 0.6, and xe3 = 1.0. The
spacing of the physical nodes is no longer uniform. In this case,

xe(ξ) = ξ(1 + ξ)/2 + 0.6(1− ξ2) (17)

and the inverse function is given by

ξ(x) = 0.5
(
5.0−

√
49.0− 40.0xe

)
. (18)

If one plots the standard Lagrange shape functions over this element and compares them to
the isoparametric ones over the same physical element (i.e. plot (4)), one sees that they differ
from each other. Both sets possess the Kronecker property but they are slightly different
from each other.
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Figure 2: Isoparametric shape functions versus Lagrange shape functions when x2
2 6= (xe1 +

xe3)/2. Case shown is for xe1 = 0.0, xe2 = 0.6, and xe3 = 1.0
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The difference in the shape functions also results in different element force vector and
stiffness matrix. For the Lagrange case applied to this element one has the results shown in
(15) and (16) with he = 1. If however we use the isoparametric shape functions over this
element one finds

keij =
AE

3

 5.8 −7.1 1.3
−7.1 18 −11

1.3 −11 9.4

 (19)

f e
i =

b

3

 0.7
2

0.3

 , (20)

which are clearly different from (15) and (16) with he = 1.
Remarks

1. Despite the differences, the isoparametric concept still leads to a valid and convergent
finite element solution. Further, in multi-dimensional problems it permits one to gen-
erate shape functions that can be used on general geometries. Note that the Lagrange
shape functions have critical failures in two- and three-dimensions for general shaped
elements – the isoparametric concept is needed.
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