HW 6: Due Thursday March 14

- 1. (20pts) Consider a 2D plane-strain 4-node quadrilateral element with nodes
 - $\boldsymbol{x}_{1}^{e} = (0,0) \text{ m}$ (1)

$$\mathbf{x}_{2}^{e} = (2,0) \text{ m}$$
 (2)

$$\boldsymbol{x}_3^e = (2,1) \text{ m} \tag{3}$$

 $\boldsymbol{x}_{4}^{e} = (0,1) \text{ m}$ (4)

(5)

and nodal displacements

$$\boldsymbol{\Delta}_{1}^{e} = (0,0) \text{ m} \tag{6}$$

 $\mathbf{\Delta}_{2}^{e} = (0.001, 0) \text{ m} \tag{7}$

$$\Delta_3^e = (0.001, 0.002) \text{ m} \tag{8}$$

 $\Delta_4^e = (0.0, -0.001) \text{ m} \tag{9}$

(10)

- (a) Find the strain field in the element.
- (b) Assume Lamé parameters $\lambda = 100$ GPa, $\mu = 50$ GPa, so that

	$2\mu + \lambda$	λ	λ	0	0	0]
D =	λ	$2\mu + \lambda$	λ	0	0	0
	λ	λ	$2\mu + \lambda$	0	0	0
	0	0	0	μ	0	0
	0	0	0	0	μ	0
	0	0	0	0	0	μ

Find the stress field in the element.

- (c) Find the traction field on the edges of the element.
- (d) Find the (consistent) nodal loads at the three nodes of the element.
- 2. (20 pts) Consider a 2D domain $\Omega = \{(x, y) \mid (x, y) \in [0, L] \times [0, L]\}$, where L = 2 m, that has been uniformly discretized into a 10 × 10 mesh of bi-quadratic elements (9-node quadrilateral elements). Ω is subject to an edge traction $\bar{\boldsymbol{t}} = \sigma_{\bar{L}}^{\underline{x}} \boldsymbol{e}_{y}$ on the top edge (y = L); assume $\sigma = 2$ MPa.

- (a) Find the (consistent) nodal loads on the 21 nodes along the top edge. [Hint: Write a computer program to compute the values.]
- (b) Plot these values as force vectors at the corresponding nodes. On the same plot, plot the traction distribution.
- (c) Verify that the sum of the consistent nodal forces is equal to the integral of the traction field over the edge.
- 3. (20 pts) Consider the case of axis-symmetric elasticity, where no field depends on the polar angle θ and $u_{\theta} = 0$. This results in a situation where the problem becomes two-dimensional (just as in the practice midterm exam) and the primary unknowns are $u_r(r, z)$, $u_z(r, z)$. Note that the general relations for the strains in cylindrical coordinates are:

$$\varepsilon_{rr} = \frac{\partial u_r}{\partial r} \tag{11}$$

$$\varepsilon_{\theta\theta} = \frac{1}{r} \frac{\partial u_{\theta}}{\partial r} + \frac{u_r}{r}$$
(12)

$$\varepsilon_{zz} = \frac{\partial u_z}{\partial z} \tag{13}$$

$$\gamma_{r\theta} = \frac{1}{r} \frac{\partial u_r}{\partial \theta} + r \frac{\partial}{\partial r} \left(\frac{u_\theta}{r}\right) \tag{14}$$

$$\gamma_{rz} = \frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r}$$
(15)

$$\gamma_{z\theta} = \frac{1}{r} \frac{\partial u_z}{\partial \theta} + \frac{\partial u_\theta}{\partial z}$$
(16)

- (a) This implies that the strain vector $\boldsymbol{\varepsilon}$ can be collapsed to a 4×1 vector (eliminating the 2 terms that will always be zero), which can be written as $\boldsymbol{\varepsilon} = \tilde{\nabla} \boldsymbol{u}$ where \boldsymbol{u} is a 2×1 vector with components $u_r(r, z)$ and $u_z(r, z)$. What is the expression for $\tilde{\nabla}$?
- (b) The stiffness matrix in this setting is

$$\boldsymbol{K} = \int \boldsymbol{B}^T \boldsymbol{D} \boldsymbol{B} \, r dr dz \tag{17}$$

where $\boldsymbol{B} = [\boldsymbol{B}_1, \boldsymbol{B}_2, \cdots, \boldsymbol{B}_n]$. What is the expression for \boldsymbol{B}_A ?