HW 2 (corrected 2/9/19 15:50): Due Thursday Feb. 14

1. Consider the following system of equations

$$
\left[\begin{array}{rrrrrrr}
1 & -1 & & & & & \\
-1 & 2 & -1 & & & & \\
& -1 & 2 & -1 & & & \\
& & -1 & 2 & -1 & & \\
& & & -1 & 2 & -1 & \\
& & & & -1 & 2 & -1 \\
& & & & & -1 & 1
\end{array}\right]\left(\begin{array}{r}
a_{1} \\
3 \\
a_{3} \\
a_{4} \\
a_{5} \\
7 \\
a_{7}
\end{array}\right)=\left(\begin{array}{r}
1 \\
f_{3} \\
3 \\
4 \\
5 \\
f_{7} \\
7
\end{array}\right)
$$

Solve for the unknown a_{i} and f_{i}.
2. Let the location matrix for a given problem be given by

$$
\mathrm{LM}=\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 3 & 2 & 6 & 5 & 4 \\
\hline 2 & 4 & 3 & 7 & 6 & 5 \\
\hline
\end{array}
$$

Assume for all elements e that the local element stiffness and force vectors are given by

$$
\boldsymbol{k}^{e}=\left[\begin{array}{rr}
50 & -50 \\
-50 & 50
\end{array}\right] \quad \boldsymbol{f}^{e}=\binom{3}{3}
$$

and assemble the global stiffness and force vectors.
3. A thin heart shaped shaped domain as shown in Fig. 1 is discretized by 4 (3-node) elements. The element stiffness matrix for elements 1 and 2 is given by

$$
\boldsymbol{k}^{e}=\left[\begin{array}{rrr}
40 & -50 & 5 \tag{1}\\
-50 & 100 & -50 \\
5 & -50 & 40
\end{array}\right]
$$

and for elements 3 and 4 it is given by

$$
\boldsymbol{k}^{e}=\left[\begin{array}{rrr}
50 & -60 & 15 \tag{2}\\
-60 & 200 & -60 \\
15 & -60 & 50
\end{array}\right]
$$

(a) Construct a location matrix LM for this geometry and numbering scheme.
(b) Assemble the global stiffness matrix.

Figure 1: Heart shaped domain.

