HW 2: Due Thursday Feb. 7

1. Consider the functional

$$
I(\phi)=\int_{0}^{1}\left[\frac{1}{2}\left(\phi^{\prime}\right)^{2}+x^{2} \phi\right] d x+6 \phi(1) .
$$

Minimize this functional over the space of trial solutions $\mathcal{S}=\{\phi \mid \phi(0)=3\}$. In other words, compute the necessary conditions for $I(\phi)$ to be minimized over \mathcal{S} - these conditions will be the weak form associated with this minimization problem.
2. Consider the strong form problem for $\phi(x)$

$$
\phi^{\prime \prime}+x^{2}=0 \quad \forall x \in(0,1),
$$

where $\phi(0)=\phi(1)=0$.
(a) Formulate the weak form problem for the given strong form problem using admissible test functions.
(b) Assume one-dimensional approximation spaces of the form

$$
\begin{aligned}
\mathcal{S}^{h} & =\left\{\phi^{h}(x) \mid \phi^{h}(x)=a(x-\langle x-0.5\rangle)\right\} \\
\mathcal{V}^{h} & =\left\{w^{h}(x) \mid w^{h}(x)=c(x-\langle x-0.5\rangle)\right\},
\end{aligned}
$$

where a and c are scalar parameters and the angle brackets signify Macaulay brackets, $\langle y\rangle=y$ if $y>0$, else it equals 0 . Determine a and plot your approximate solution $\phi^{h}(x)$ versus the exact solution. All plots need to be computer generated, have proper axes labels, etc., i.e. use Matlab, Python, etc. to make them.
3. A circular elastic rod of length L is fixed at its base and embedded in a large soft elastic block. The top of the rod is subjected to an imposed torque T_{L}. The weak form problem that governs the rotation of the rod is as follows: Find $\varphi(z) \in \mathcal{S}=\{\phi(z) \mid \phi(0)=0\}$ such that

$$
\int_{0}^{L}\left[\frac{d w}{d z} G J \frac{d \varphi}{d z}+\beta w \varphi\right] d z=w(L) T_{L}
$$

is satisfied for all $w \in \mathcal{V}=\{w(z) \mid w(0)=0\}$. The variables appearing in this relation have the following meanings: L is the length of the rod, G is the shear modulus of the rod, J is the polar moment of inertia of the rod, T_{L} is the torque applied to the rod,
and β is a measure of the rotational restraint that the soft elastic block imparts to the rod.

The minimization form for this problem reads: Minimize $I(\varphi)$ over the space of trial functions $\mathcal{S}=\{\phi(z) \mid \phi(0)=0\}$, where

$$
\begin{equation*}
I(\varphi)=\frac{1}{2} \int_{0}^{L}\left[G J\left(\frac{d \varphi}{d z}\right)^{2}+\beta \varphi^{2}\right] d z-T_{L} \varphi(L) . \tag{1}
\end{equation*}
$$

Using classical methods for solving ordinary differential equations with constant coefficients, the exact solution can be found from the strong form. The result is

$$
\varphi(z)=\left(\frac{T_{L} \lambda}{G J}\right) \frac{\sinh (z / \lambda)}{\cosh (L / \lambda)},
$$

where $\lambda=\sqrt{G J / \beta}$.
Using the two-dimensional approximation space $\mathcal{S}^{h}=\left\{\varphi^{h}(z) \mid \varphi^{h}(z)=a_{1} \psi_{1}(z)+\right.$ $\left.a_{2} \psi_{2}(z)\right\}$ find and plot the solution to the minimization form problem (1) in comparison to the exact solution. Assume $\psi_{1}(z)=z$ and that $\psi_{2}(z)=\frac{1}{3} z^{3}$. To keep everything manageable, assume that $T_{L}=G J=\beta=L=1$ (all in consistent units).
On a single graph plot $\varphi(z)$ and $\varphi^{h}(z)$ versus z. On a second graph, plot the error $\left(\varphi(z)-\varphi^{h}(z)\right)$ versus z.

