HW 1: Due Thurday Jan. 31

1. A low-molecular weight substance γ is being injected into a one-dimensional reservoir at a constant rate b_o (g/m³ · s). γ is being consumed by a chemical reaction at a spatially inhomogeneous rate $\alpha(x) = \alpha_1 + \alpha_2 \frac{x}{L}$ (1/s), where α_1, α_2 are given constants. γ also diffuses laterally with a spatially inhomogeneous diffusivity $D(x) = D_1 + D_2 \frac{x}{L}$ (m²/s), where D_1, D_2 are given constants. Derive an expression for the governing balance law for γ . [Hint: Conservation of mass.]

2. Consider the (strong form) problem of finding u(x) such that

$$\frac{d}{dx}\left[\frac{du}{dx}\right] + 2 = 0 \tag{1}$$

$$u(L) = u_L \tag{2}$$

$$\frac{du}{dx}(0) = F_o \tag{3}$$

Derive the weak form (W) of the governing balance equation? and provide a statement of the weak form problem (WP).

3. Consider the following weak form problem: Find $u(x) \in S$ such that

$$\int_{0}^{1} w'u' + wu \, dx = 5w(1) \tag{4}$$

for all $w \in \mathcal{V}$, where $\mathcal{S} = \{u(x) \mid u(0) = 1\}$ and $\mathcal{V} = \{w(x) \mid w(0) = 0\}$.

- (a) What is the governing second order differential equation that matches this weak form i.e. what is the associated strong form?
- (b) Show that the expression on the left hand side represents a symmetric bi-linear form.
- (c) What is the minimization form (M) associated with this weak form?