
ME C180 / CE C133 Spring 2019

Engineering Analysis using the Finite Element Method

University of California, Berkeley, Spring 2019
Instructor: Sanjay Govindjee

GSI: Linus Mettler

Lab 3

In this lab, you will write your own FE code for 1-D thermal problems.
We will start by implementing linear element shape functions and proceed
next week with second order elements. For both, you will examine the
convergence behavior.

Your FE code will be quite general in that it can solve any 1-D steady-state
thermal problem with

− inhomogeneous conductivity and cross-section area
− inhomogeneous distributed heat source
− variable element sizing
− essential and natural boundary conditions
− first and second order elements (second order next week)

To this end, you will implement isoparametric shape functions, location
matrices and Gaussian quadrature.

To help you get started, you are provided with a Matlab template. You are
not required to use the template. You may want to replace parts of it with
your own coding strategy.

Use the Lab 2 steady-state thermal load case to test your implementation.

In order to check off this lab you will provide a plot of your FE result vs.
the exact solution (for both linear and quadratic elements), as well as a
convergence plot for each element order. No report is required.

1 Lab 3



ME C180 / CE C133 Spring 2019

1 Problem statement

Consider a slender bar of length L = b−a, inhomogeneous thermal conductivity K(x)
and cross sectional area A(x) subjected to a distributed heat source Q(x) (with units
of power per unit length). The governing differential equation is

d

dx

(
A(x)K(x)

dT (x)

dx

)
+Q(x) = 0 on Ω = (a, b) (1)

The boundary conditions can be either essential or natural1

T (a) = T̄a or −
(
K(x)

dT (x)

dx

)
x= a

= q̄a (2)

T (b) = T̄b or

(
K(x)

dT (x)

dx

)
x= b

= q̄b (3)

where T̄a and T̄b are the temperatures specified at the boundaries x = a and x = b,
and q̄a and q̄b are the prescribed heat fluxes, respectively. Of course, at any given
boundary one can only prescribe either the temperature or the heat flux.

Derive the weak form statement. Be sure to include the boundary terms arising from
the natural boundary conditions.

Derive expressions for the element stiffness matrix ke and element load vector fe in
terms of integrals over the spatial variable x using linear and quadratic element shape
functions N e

i (x) to approximate the temperature distribution within the element.

Recalling the isoparametric map from x to ξ, rewrite the integrals in terms of the
parametric spatial variable ξ.

2 FE code

Your finite element code will be roughly divided into the following modules:

− setting all parameters, boundary conditions, loads etc.

− mesh generator:

(i) nodal locations
(ii) location matrix LM

1Recall, however, that at least one essential boundary condition is necessary for the solution to
the differential equation to be unique.

2 Lab 3



ME C180 / CE C133 Spring 2019

(iii) idd (and idf) logical mask arrays

− loop over all elements:

− integrate element stiffness and element load vector

(i) linear and quadratic shape functions
(ii) isoparametric mapping
(iii) Gaussian integration

− add element contribution to global stiffness matrix and global load vector

− solution taking into account essential and natural boundary conditions

− post-processing (already coded for you):

(i) plotting results
(ii) error in L2 norm

The template provided to you will help you organize the structure of your code.
It is often helpful to create functions for specific tasks, thereby creating a modular
structure to your code.

2.1 Mesh generator

Create a function to generate your mesh. The function takes as input

(i) geometry parameters (a, b)

(ii) number of elements

(iii) element order

and creates as output a structure mesh with fields

(i) lm location matrix LM

(ii) n array containing the nodal locations

(iii) nen number of nodes per element

(iv) numnod number of nodes in the mesh

(v) numel number of elements in the mesh

(vi) idf mask array for free degrees of freedom

(vii) idd mask array for driven degrees of freedom

(viii) val given values of heat flow (on natural boundary)2

2This is a column vector of the same size as the number of nodes. All entries except for those
at the natural boundary nodes will be zero.

3 Lab 3



ME C180 / CE C133 Spring 2019

2.2 Integration of element stiffness matrix and load

For the integration of the stiffness matrix always start with the weak form of the
problem statement. Transform the integral over the element from x to parametric
space ξ in order to set up the Gaussian integration.

Note that we don’t store the element stiffness matrices. Once computed, we insert
the values into the global stiffness matrix and discard the element stiffness matrix
as we move on to integrate the next element.

2.3 Assembly of global equations

Make use of the location matrix to insert the element stiffness values at the correct
location of the global stiffness matrix. The same goes for the assembly of the load
vector. Your code should work even if the element / node numberings are messy.

2.4 Solution

If natural boundary conditions are present, there are additional terms in the load
vector that have to be taken care of. Also, remember that the stiffness matrix is sin-
gular to begin with. You must incorporate the natural boundary conditions in order
to arrive at a solution to the system of equations. This is done most conveniently
using mask arrays as shown in class.

2.5 Post-processing

No additional work should be required for post-processing (unless perhaps you used
different variable names etc.). For your own interest, you are of course welcome to
do your own post-processing on the FE result.

Appendices

A Review: From weak form to FE solution

Starting with the weak form, we used the following procedure to arrive at our finite
element formulation of the boundary-value problem:

(a) Break up domain into N e elements. Pick the number of nodes according to the
desired order of the element. The nodes can, but don’t need to be, distributed
equidistantly.

4 Lab 3



ME C180 / CE C133 Spring 2019

(b) Define two functions (an approximation TN(x) to the true solution and a test
function vN(x))

TN(x) =
N∑
j=1

ajNj(x)

vN(x) =
N∑
i=1

biNi(x)

(c) Evaluate the weak form integral equation (sum over all i and j). Here, Q̄
∣∣
x

is
the rate of heat moving across the boundary where natural boundary conditions
are applied.∫ b

a

d

dx

( N∑
i=1

biNi(x)
)
A(x)K(x)

d

dx

( N∑
j=1

ajNj(x)
)
dx =

=

∫ b

a

Q(x)
N∑
i=1

biNi(x)dx+

[
Q̄
∣∣∣
x

N∑
i=1

biNi(x)

]b
a

(d) Noting that the summation and integration can be interchanged and that bi in
the above equation can be factored out, we arrive at a linear algebraic equation

{b} ·
(

[K]{a} − {F}
)

= 0

which must be valid for any choice of bi (the coefficients of our arbitrary test
function). This implies that

(
[K]{a}−{F}

)
= 0. Here, the components of the

so-called stiffness matrix are given by

Kij =

∫ b

a

dNi(x)

dx
A(x)K(x)

dNj(x)

dx
dx

and the external load is represented by

Fi =

∫ b

a

Q(x)Ni(x)dx+ boundary term if applicable

(e) Break up the domain of the integrals into the individual elements.

Kij =

∫
Ω

dNi(x)

dx
A(x)K(x)

dNj(x)

dx
dx =

∑
elements

∫
Ωe

. . . dx =
∑

elements

keij

Fi =
∑

elements

∫
Ωe

. . . dx+ boundary term if applicable =
∑

elements

f e
i

5 Lab 3



ME C180 / CE C133 Spring 2019

(f) For every element, integrate to obtain the element stiffness matrices (which we
then assemble into the global stiffness matrix) and element load vector. Using
the isoparametric map

x̂(ξ) =

p+1∑
i=1

xiN̂i(ξ)

we can convert the integrand to the parametric space

keij =

∫ b

a

dN e
i (x)

dx
A(x)K(x)

dN e
j (x)

dx
dx

=

∫ 1

−1

dN e
i (x̂(ξ))

dξ

dξ

dx
A(x̂(ξ))K(x̂(ξ))

dN e
j (x̂(ξ))

dξ

dξ

dx

dx

dξ
dξ

=

∫ 1

−1

dN̂i(ξ)

dξ

1

Ĵ(ξ)
Â(ξ)K̂(ξ)

dN̂j(ξ)

dξ

1

Ĵ(ξ)
Ĵ(ξ)dξ

where Ĵ(ξ) is the Jacobian, which is in general a function of ξ.3 The Jacobian
can be computed from the nodal locations xi and the derivatives of the element
shape functions according to

Ĵ(ξ) =
d

dξ
x̂(ξ) =

p+1∑
i=1

xi
d

dξ
N̂i(ξ)

where p denotes the order of the element (so p + 1 is the number of nodes,
i.e. the number of shape functions, per element). The element load vector is
similarly

f e
i =

∫ b

a

Q(x)N e
i (x)dx+ boundary term

=

∫ 1

−1

Q(x̂(ξ))N e
i (x̂(ξ))

dx

dξ
dξ + boundary term

=

∫ 1

−1

Q̂(ξ)N̂i(ξ)Ĵ(ξ)dξ + boundary term

(g) In the parametric space, evaluate the above integrals using Gauss integration.
In the choice of number of integration points, take into account the polynomial
orders of each integrand.

3Note: for linear elements, the Jacobian is a constant.

6 Lab 3



ME C180 / CE C133 Spring 2019

(h) Reassemble the global stiffness matrix and the global load vector. The element
stiffness matrix entry of a node, which is shared between two adjacent elements,
must be summed with the corresponding entry of the other element stiffness
matrix. The same principle holds for the load vector.

(i) Take into account the boundary conditions. More specifically, add the Q̄ term
to the load vector at the boundary node where a natural boundary condition
applies.

(j) Solve the linear system of equations for the unknown ai. Take into account
that some ai are known from essential boundary conditions (temperature pre-
scribed). We recommend you use mask arrays to deal with the essential bound-
ary conditions.

(k) Post-processing: Show the result by mapping the solution at a fixed number
of points from the parametric domain onto the real domain. Some additional
post-processing is needed to display, for example, the strain distribution (taking
the derivative in the parametric domain and map it back to the real domain).

(l) Compute the L2 norm as defined in the previous assignment. Note that for the
integration we employ the very same strategy of breaking the integral into the
individual elements, mapping to the local parametric coordinate system and
performing the integrations there.

7 Lab 3


	Problem statement
	FE code
	Mesh generator
	Integration of element stiffness matrix and load
	Assembly of global equations
	Solution
	Post-processing

	Appendices
	Review: From weak form to FE solution

