
UNIVERSITY OF CALIFORNIA BERKELEY Structural Engineering,
Department of Civil Engineering Mechanics and Materials
Spring 2016 Professor: S. Govindjee

HW 6: (210 points total)
This homework assignment is to be done as homework as well for labs 10 and 11.
Answers need to show all work and include related computer code.

1. (50 pts) Consider a plane-strain 3-node triangular element with nodes

xe
1 = (0, 0) m (1)

xe
2 = (2, 0) m (2)

xe
3 = (0, 1) m (3)

Lamé parameters λ = 200 GPa and µ = 100 GPa and density ρ = 6000 kg/m3. At
time t = 0 the nodal displacements are

∆e
1 = (−10−3,−10−3) m (4)

∆e
2 = (10−3, 0) m (5)

∆e
3 = (0, 10−3) m (6)

and the nodal velocities are

ve
1 = (0, 0) m/s (7)

ve
2 = (0, 0) m/s (8)

ve
3 = (0, 0) m/s (9)

and the nodal accelerations are

ae
1 = (0, 0) m/s2 (10)

ae
2 = (0, 0) m/s2 (11)

ae
3 = (0, 0) m/s2 (12)

Using Newmark’s method with β = 0, γ = 1/2 find and plot the x-component of
local node 1 over the interval [0, 0.005] s. You should lump the mass matrix using the
row sum technique. If you observe that

∑3
A=1NA(x, y) = 1, it is easier to compute

the components of the lumped mass matrix. Make sure to pick a time step that is
sufficiently small to be stable and one that provides accuracy in the result.
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2. (80 pts) Consider a one-dimensional elastic bar whose dynamic behavior is governed
by

AEu′′ = Aρü (13)

Assume that the bar is fixed at x = 0 and is free at x = L. With these boundary
conditions the exact natural frequencies of vibration are given by

ωexact
j =

√
E

ρ

1

L

(π
2

+ jπ
)

j ∈ {0, 1, 2, . . .} (14)

Find and plot the error in the finite element approximation for ω0 and ω3 when using
linear as well as quadratic elements. The relative unsigned error |ωfea

j − ωexact
j |/ωexact

j

should be plotted versus L/d, where d is the nodal spacing. Use log-log scaling. The
range of L/d should be sufficient for the relative unsigned error to drop below 10−6 for
both vibrational modes. All your data should appear on a single plot.

Assume L = 1 m, A = 0.01 m2, E = 200 GPa, and ρ = 5000 kg/m3.

[Hint: Always sort the output of MATLAB’s eigensolvers. You should observe that
linear elements converge more slowly than the quadratic elements and the higher modes
also converge slower than the lower modes.]

3. (80 pts) Consider a one-dimensional elastic bar, length L = 50 µm, cross-sectional area
A = 0.1 µm × 0.1 µm, density ρ = 4127 kg/m3, and Young’s modulus E = 139 GPa.
Assume the bar is fixed at both ends and excited at xa = L/2− d and xb = L/2 + d,
where d = 5 µm, by forces fa(t) = h sin(2πfot) and fb(t) = h sin(2πfot), where h =
1 mN and fo = 53.83 GHz.

(a) Construct a reduced order model of the system based upon the 13 modes nearest
to fo. In other words find the 13 frequencies nearest fo as well as their associated
eigenvectors and assume the solution is of the form ∆(t) =

∑13
j=1 dj(t)∆̂j.

(b) Using the reduced order model compute the response of the system over the time
interval [0, 20] ns. As output, plot (uc+ud)/2 over the time interval, where xc = d
and xd = L − d. Assume the positions and velocities of all material points are
zero at time zero.

[Hint: (1) Generate your mesh such that you always have nodes at xa, xb, xc, and xd.
(2) Try to keep your element sizes uniform. (3) The generalized eigenvalue problem
computes the circular frequencies squared. (4) The response quantity is very very small
– order 10−22 m. (5) Make sure your mesh is sufficiently resolved. (6) The solution
for each modal amplitude can be easily evaluated analytically due to the sinusoidal
form of the loading. (7) When using eigs in MATLAB you need to remember to mass
orthogonalize the vectors since MATLAB does not.]
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