
HW 1: Due Thurday Feb. 4

- 1. A cylindrical water tank of radius R has a water level of h(t). Water flows into the tank at a rate of $q_{in}(t)$ (m³/day) and is drawn out at a rate of $q_{out}(t)$ (m³/day). Use the conservation of mass (assume water to be incompressible) to arrive at the governing equation for h(z, t). [Hint: Should be a first order differential equation for h(t).
- 2. A low-molecular weight substance γ is being injected into a one-dimensional reservoir at a constant rate b_o (g/m³ · s). γ is being consumed by a chemical reaction at a spatially inhomogeneous rate $\alpha(x) = \alpha_1 + \alpha_2 \frac{x}{L}$ (1/s), where α_1, α_2 are given constants. γ also diffuses laterally with a spatially inhomogeneous diffusivity $D(x) = D_1 + D_2 \frac{x}{L}$ (m²/s), where D_1, D_2 are given constants. Derive an expression for the governing balance law for γ . [Hint: Conservation of mass.]

3. Consider the (strong form) problem of finding u(x) such that

$$\frac{d}{dx}\left[(1+x)\frac{du}{dx}\right] + 2 = 0 \tag{1}$$

$$u(L) = u_L \tag{2}$$

$$\frac{du}{dx}(0) = F_o \tag{3}$$

- (a) What is the space of trial solutions for this problem?
- (b) What is the space of (admissible) test functions for this problem?
- (c) What is the weak form of the governing balance equation?

4. Consider the following weak form problem: Find $u(x) \in \mathcal{S}$ such that

$$\int_0^1 w'u' + wu \, dx = 5w(1) \tag{4}$$

for all $w \in \mathcal{V}$, where $\mathcal{S} = \{u(x) \mid u(0) = 1\}$ and $\mathcal{V} = \{w(x) \mid w(0) = 0\}$.

Find an approximate Galerkin solution using the approximations $S_2 = \{u(x) \mid u(x) = u_1x + u_2x^2 + 1\} \subset S$ and $\mathcal{V}_2 = \{w(x) \mid w(x) = w_1x + w_2x^2\} \subset \mathcal{V}$. Compare your solution to the exact solution. [Hint: What is the governing second order differential equation that matches this weak form?]