University of California, Berkeley
CEE C133/ME C180, Engineering Analysis Using the Finite Element Method Spring 2010
Instructor: S. Govindjee
GSI: N. Hodge

Lab 09: Beam Bending in 2D and 3D

- Consider the following figure. It consists of a three-dimensional beam subject to bending loading. The dimensions are $L=1.0$ in the x direction, $h=0.1$ in the y direction, and $d=1.0$ in the z direction. The boundary conditions are totally fixed at $X=0$, and at $X=L$, a uniform traction in the $y=$ direction, with the magnitude $t_{y}=-1 e 8$, which results in the flexure of the beam. The material properties are $E=2 e 11$ and $\nu=0.40$.

- Recall that the plane strain solution assumes that there is zero displacement (strain) in the out-of-plane direction. This assumption is typically represented by the idealization of the body having a very large out-of-plane dimension. Alternately, plane stress assumes no stress in the out-of-plane direction, which is manifested in the representation of the body having a very small out-of-plane dimension.
- Knowing what you do about the plane strain and plane stress assumptions, model the $x-y$ plane of this beam using both plane strain and plane stress, as well as in three dimensions.
- In your results, include the following: 1) plots of the y-displacement along the line $Y=0$ for all three cases on the same plot, and 2) checks of the respective plane solution assumptions with respect to the 3D case. Also, comment on your results.

