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Spring 2009
Instructor: S. Govindjee
GSI: N. Hodge

Lab 8

Your assignment this week will be another very non-trivial generalization of your code. I
will try to explain what you are to do as clearly as possible, and give you some hints, as
appropriate.

Because this will be a fair bit of work (probably even more than Lab 7), the due date for
this lab will be Wednesday, 01-Apr-2009, at 5PM.

Your assignment is as follows:

• To make it easier for me to run your codes, you are to take all of your input from
my input deck, just like last week. By “input”, I mean all of the data for the PDE
(i.e., k(x), r(x), BCs), as well as the FE parameters (number of elements, element
type, etc.). I have posted it on bspace. It is fairly well documented, but please ask if
anything is unclear.

The deck is just a matlab function that you can (i.e. will) call, and get back (hopefully)
all of the data needed to run your code. Please, do not have your code take any
command line input; get everything from the input deck.

• Solve a heat transfer problem in 2D. Recall from Homework 5 the exact weak form,
with the modification that k is both anisotropic, and a function of x:

0 =

∫
Ω

[div(k(x) grad(T )w)− k(x) grad(T ) · grad(w) + wr] dv,

⇒∫
Ω

−k(x) grad(T ) · grad(w) dv = −
∫

Ω

wr dv −
∫

Ω

div(k(x) grad(T )w) dv,∫
Ω

grad(w) · k(x) grad(T ) dv =

∫
Ω

wr dv −
∫

∂Ω

wq · n da.

Also, recall its approximation:

∫
Ω

(Bŵ) · k(x)
(
BT̂
)
dv =

∫
Ω

(Nŵ) r dv −
∫

∂Ω

q̄ (Nŵ) da,

ŵT

([∫
Ω

BTk(x)B dv

]
T̂

)
= ŵT

(∫
Ω

NT r dv −
∫

∂Ω

q̄NT da

)
,
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where

k =

[
k1,1(x) k1,2(x)
k2,1(x) k2,2(x)

]
.

Thus,

[∫
Ω

BTk(x)B dv

]
T̂ =

∫
Ω

NT r dv −
∫

∂Ω

q̄NT da,

or

KT̂ = F.

• You can assume that the domain is always a rectangle in R2, such that x1 ∈ {x : 0 ≤
x ≤ a}, and x2 ∈ {x : 0 ≤ x ≤ b}.

• You can assume that the global node numbering will always be monotonically increas-
ing, first in the x1 direction, and then in the x2 direction. An illustration follows, for
the case of nel1 = 3 and nel2 = 2.
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Note that the local node numbering for 4 node quads is typically given as follows:

34
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• Your elements only need to be linear quadrilaterals, formulated in parametric space.

• In the 1D case, many of you used the chain rule to claim that

∂NA

∂x

∂NB

∂x

∂x

∂ξ
=
∂NA

∂ξ

∂NB

∂ξ

∂ξ

∂x
,
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which is ok for the 1D case, but won’t work for 2D or 3D. So, we have to calculate ∂N
∂x

properly. First, note that we represent the gradient of a scalar T in 2D as follows:

grad(T ) ≈ BT̂,

where

B =

[
N1,1 N2,1 . . . Nnen,1

N1,2 N2,2 . . . Nnen,2

]
.

So, if we can calculate ∂NA

∂x
and ∂NA

∂y
for all A, then we are good. So, how to do this?

We don’t have the shape functions written in physical space anymore, so we can’t take
those derivatives directly, but we also know that there is some relation between points
on the master element, and points in the physical element, and we exploit that fact
via the chain rule:


∂NA

∂ξ
∂NA

∂η

 =


∂NA

∂x

∂x

∂ξ
+
∂NA

∂y

∂y

∂ξ
∂NA

∂x

∂x

∂η
+
∂NA

∂y

∂y

∂η

 ,

=


∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η


 ∂NA

∂x
∂NA

∂y

 .
So, the term on the left hand side is easy to calculate, since the shape functions are
formulated directly in isoparametric coordinates. The matrix on the right hand side is
also easy to calculate, for the same reason. The vector on the right hand side is what
we want to solve for, so, solve the system of equations.

• Your code should perform its integration using Gaussian quadrature. Note that the
matrix on the right hand side above is what we call the “Jacobian” matrix for the
element, and its determinant, J = det([J ]), is the scale factor we use to map the
integrals to the parent space. Thus, the quadrature (of the stiffness, for example) can
be calculated as follows:
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∫
Ωe

BTk(x)B dv =

∫ 1

−1

∫ 1

−1

B(ξ, η)Tk(x(ξ))B(ξ, η)J(ξ, η) dξ dη,

=

∫ 1

−1

∫ 1

−1

g(ξ, η)J(ξ, η) dξ dη,

≈
∫ 1

−1

(
nip∑
i=1

g(ξi, η)J(ξi, η)wi

)
dη,

≈
nip∑
j=1

wj

(
nip∑
i=1

g(ξi, ηj)J(ξi, ηj)wi

)
,

=

nip∑
i=1

nip∑
j=1

g(ξi, ηj)J(ξi, ηj)wiwj.

• You only need to implement Dirichlet boundary conditions. Implementation of Neu-
mann boundary conditions would be a bit complicated, and I figure that, ultimately,
you already know how to do integrations in 1D . . .

Per the input deck, you can assume that each Dirichlet BC covers a whole edge, and
the edges are numbered, as follows:

edge number description
1 x = 0
2 x = a
3 y = 0
4 y = b

You need to turn the following in to me:

• A convergence plot of your code versus the exact solution, in the l2 norm, for the
problem given in Homework 6. Plot ten different pairs of (nel1, nel2), ensuring that
your elements are always square, and such that your last run meets the same tolerance
given in Homework 6. Plot your error versus 1

he . Comment on how many linear elements
your code took to meet the stated tolerance, versus COMSOL (from Homework 6).

• A plot of the output from your final run. It should look something like the following:
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• A plot of the error |uexact − uFE| as a function of x and y.

Please give these to me on paper (not via email).

• Email me your code, which I will run with an input deck that is different from the one
I posted.
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