HW 1: Due Thurdays Jan 29

1. Consider the following ODE $\phi^{\prime \prime}+x=0$ over the interval $(0,1)$ and the boundary conditions $\phi(0)=0$ and $\phi^{\prime}(1)=1$. Find the exact solution and make a plot (to which you will add more curves in the next problems).
2. Consider the following guess for the solution to Problem $1 \tilde{\phi}=C x^{2}$, where C is a to-be-determined constant.
(a) Find C such that the residual error at $x=0.5$ is zero. Add this solution to your plot.
(b) Find C such that the residual error at $x=1.0$ is zero. Add this solution to your plot.
(c) Find C such that the L^{2} norm of the residual over $(0,1)$ is minimized. Add this solution to your plot.
3. Compute the L^{2} norm of the function $f(x)=x^{2}$ over the domain $\Omega=(0,1)$.
4. Show that $\sin (x)$ and $\sin (2 x)$ are orthogonal in the L^{2} inner product over the domain $\Omega=(0, \pi)$
5. Consider the function $f_{o}(x)=1$ over the interval $(0,1)$. Find a linear function $f_{1}(x)$ with unit norm over the same interval such that f_{1} is orthogonal to f_{o}; assume an L^{2} norm and inner product.

Useful definitions:

1. L^{2} inner product over the interval (a, b)

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

2. L^{2} norm over the interval (a, b)

$$
\|f\|=\sqrt{\langle f, f\rangle}=\sqrt{\int_{a}^{b} f^{2} d x}
$$

