HW 1: Due Thurdays Jan 29

- 1. Consider the following ODE $\phi'' + x = 0$ over the interval (0, 1) and the boundary conditions $\phi(0) = 0$ and $\phi'(1) = 1$. Find the exact solution and make a plot (to which you will add more curves in the next problems).
- 2. Consider the following guess for the solution to Problem 1 $\tilde{\phi} = Cx^2$, where C is a to-be-determined constant.
 - (a) Find C such that the residual error at x = 0.5 is zero. Add this solution to your plot.
 - (b) Find C such that the residual error at x = 1.0 is zero. Add this solution to your plot.
 - (c) Find C such that the L^2 norm of the residual over (0,1) is minimized. Add this solution to your plot.
- 3. Compute the L^2 norm of the function $f(x) = x^2$ over the domain $\Omega = (0, 1)$.
- 4. Show that $\sin(x)$ and $\sin(2x)$ are orthogonal in the L^2 inner product over the domain $\Omega = (0, \pi)$
- 5. Consider the function $f_o(x) = 1$ over the interval (0, 1). Find a linear function $f_1(x)$ with unit norm over the same interval such that f_1 is orthogonal to f_o ; assume an L^2 norm and inner product.

Useful definitions:

1. L^2 inner product over the interval (a, b)

$$\langle f,g \rangle = \int_{a}^{b} f(x)g(x) \, dx$$

2. L^2 norm over the interval (a, b)

$$||f|| = \sqrt{\langle f, f \rangle} = \sqrt{\int_a^b f^2 \, dx}$$