HW 8: Due 4/9/04

1. Wind at a velocity U_{o} and pressure p_{o} flows past a Quonset hut which is a half cylinder of radius 2 m and length $L=5 \mathrm{~m}$. The internal pressure, p_{i}, in the hut is 101.6 kPa and the far field pressure, p_{o}, is also 101.6 kPa .
(a) Assuming incompressible Euler flow, find the uplift force on the hut for wind velocities from 0 kph to 100 kph .
(b) What happens to the uplift forces if we change the shape of the hut cross-section from a semi-circle to a square with the same volume?
(c) In very strong winds the forces in part (a) can become quite large. Suppose that a hole is introduced in the hut roof at a point A to make p_{i} equal to the surface pressure there. At what angle θ should hole A be placed to make the uplift force zero? Does the location change with velocity?

