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1. Spring-Mass:
1
I(u) = §k‘u2 + Mg(h —u) (1)
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(a) Consider the spring-mass system shown. Plot the potential energy of the system
versus the spring displacement and verify the potential is a minimum at static
equilibrium.

(b) Take the derivative of I, apply the necessary condition for an extremal value, and

derive the static equlibrium equations.

2. Consider a functionally graded torsion bar as shown; the potential energy is given by
L
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where J is the polar moment of inertia, G(z) = G; + Gsz is a spatially varying shear
modulus, and ¢ is the section rotation.
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Az z2<LJ2
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Find ¢ € S which minimizes [I. Compare to the exact solution ¢(z) = JLGQ In(1+ %z)

3. Consider the following potential for an elastic bar which is loaded by a force P at
x = L, a body force b(x), and held fixed at x = 0.

M(u(x)) = /0 %AE(du/dm)2 dx — /0 budxr — Pu(L). (4)

Take the variational derivative of II and derive the classical governing equation:
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