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Internal representation of numbers

1 Introduction

In everyday life, numbers are almost exclusively represented using the base 10 decimal sys-
tem. This means, for example, that an integer N written as

N = anan−1 · · · a1a0 (1)

corresponds to a short-hand for

N = (anan−1 · · · a1a0)10 = an × 10n + an−1 × 10n−1 + · · ·+ a1 × 101 + a0 × 100 (2)

As a concrete example we have that:

N = (231)10 = 2× 102 + 3× 101 + 1× 100 (3)

In the above case, 10 is called the base (or radix ) of the system. The ai’s are integers between
0 and 9; i.e., ai ∈ {0, 1, 2, · · · , base− 1}.

Rational numbers less than 1, numbers with decimal points, make use of the negative
powers of the base:

N = (0.a1a2 · · · an−1an)10 = a1 × 10−1 + a2 × 10−2 + · · ·+ an−1 × 10−(n−1) + an × 10−n (4)

As a concrete example we have that:

N = (0.231)10 = 2× 10−1 + 3× 10−2 + 1× 10−3 (5)

2 Binary Representation

Computers generally use a base 2 system which is called the binary system. An integer N is
represented as

N = (anan−1 · · · a1a0)2 = an × 2n + an−1 × 2n−1 + · · ·+ a1 × 21 + a0 × 20 (6)

The ai’s are only allowed to be 0 or 1. As a concrete example we have:

N = (11100111)2 = 1× 27 + 1× 26 + 1× 25 + 0× 24 + 0× 23 + 1× 22 + 1× 21 + 1× 20 (7)

The binary system is quite convenient to computers, since the basic unit of information that
they store is an electrical charge which can be either “on” or “off”. A single binary digit (a
0 or a 1) is called a bit. An 8-bit sequence of 0’s and 1’s is usually called a byte.

Determining the binary representation of integers is made easy in MATLAB by the com-
mand dec2bin. For example,
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>> A=dec2bin(231)

A =

11100111

You can convert the other way using bin2dec.

2.1 Storage of binary integers

The set of all integers is countably infinite. This means that in order to represent all integers,
computers would need infinite storage capacity. In reality, computers can store only a finite
subset of all integers because each integer is only allowed a certain number of bits. The
number of bits allocated for any integer stored is sometimes called a word-length. Using a
16-bit integer word-length, the integer N = 231 may be stored as

0 000000011100111 . (8)

The first bit, of the 16 bits, stores the sign of the number (here “positive” is stored as 0),
while the remaining 15 bits store the number itself using the binary system representation.

Example 1 What is the largest integer that can be stored in a 32-bit signed integer? The
binary representation for this would be the case where are the bits (save the sign bit) are set
to unity:

0 1111111111111111111111111111111︸ ︷︷ ︸
31 bits

(9)

This is equivalent to

20 + 21 + 22 + · · ·+ 230 =
1− 231

1− 2
= 231 − 1 ≈ 2× 109 (10)

or roughly 2 billion. For unsigned integers, 32-bits are available and one can get up to 4
billion. If you type intmax in MATLAB it will show you the precise value.

Example 2 Convert the integer (578)10 to base 3. This can be performed by repeatedly
subtracting successive powers of 3 from the number until one arrives at zero. We start the
process with the largest power of 3 that will divide into (578)10. This can be computed from
y = blog3(578)c. We can now divide our number by 3y to find out how many times it goes
into (578)10, and then subtract this amount and repeat. A simple bit of code that achieves
this is

% base conversion
clear;
x = 578;
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while x˜=0
y = floor(log(x)/log(3)); % Compute highest exponent
d(y+1) = floor(x/3ˆy); % Determine digit value
x = x − d(y+1)*3ˆy; % Deflate number

end
disp('Base 3 representation');
disp(d(end:−1:1));

The result is (210102)3. Our algorithm can be checked using the built-in MATLAB function
dec2base(578,3).

2.2 Binary storage of real numbers

Real numbers, as opposed to integers, have decimal points. They can be represented in many
different ways. One convenient way is to represent them in scientific notation or floating-point
form:

x = ±(d1.d2 · · · dn)β1 × βE2 . (11)

In the above, ± is the sign of the number. The factor (d1.d2 · · · dn)β1 is known as the
significand. The digits after the decimal point, d2 · · · dn, are called the fraction or mantissa.
β1 is the base for the fraction; β2 is the base for the exponent. E is the exponent. The
floating-point form of a real number is called normal if d1 6= 0; note 0 ≤ di < β1. In normal
form one also has the relation that (d1.d2 · · · dn)β1 < β1

In order to store a real number expressed in normal form, the computer needs to allocate
space for the sign, fraction, and exponent – there is no need to store d1 since in the binary
system it is always equal to 1. In most computer systems real numbers are stored using
32-bits (single precision) or 64-bits (double precision). For both integers and real numbers,
the precise word-length is dependent on the computer architecture and can vary widely from
system to system.1

2.3 IEEE standard

MATLAB uses the IEEE standard for storing floating point numbers. Its default is to use
double precision numbers. However, we will start by discussing single precision numbers as
it requires less writing. For single precision IEEE numbers (32 bits), the first bit is the sign
bit, the next 8 bits are for the biased exponent (a shifted form of the exponent), and the
remaining 23 bits are for the fraction (mantissa). Both the exponent and the fraction are
stored in base 2 so that β1 = β2 = 2. A single precision number, V , “looks like”:

V = t︸︷︷︸
sign bit (s)

t t t t t t tt︸ ︷︷ ︸
biased exponent bits (e)

t t t t t t t t t t t t t t t t t t t t t t t︸ ︷︷ ︸
mantissa bits (f)

(12)

1When buying computers and/or operating systems, they are often designated as 32-bit or 64-bit. This
designation refers to the word length used to index locations in memory. Thus a 64-bit computer/OS can
utilize a lot more memory than a 32-bit computer/OS. But this is independent of the sizes used to store
variables in a program.
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By definition: If all the biased exponent bits are set, i.e. e = 255, and f is nonzero then
V = NaN (Not a Number). If all the biased exponent bits are set, i.e. e = 255, f = 0 and
s = 1, then V = −∞. If all the biased exponent bits are set, i.e. e = 255, f = 0 and s = 0,
then V = +∞. If 0 < e < 255, then

V = (−1)s × 2e−127 × (1.f)2 . (13)

The “(1.f)2” represents the binary number created by appending f to an implicit “1.”. The
actual exponent E is not stored. Rather, e = E+127 is stored so that the exponent can have
positive as well as negative values without the need for another sign bit; 127 is referred to
as the bias. Beyond normal numbers there is also the special case of subnormal numbers. A
subnormal number occurs when e = 0. In this situation, the significand is assumed to be of
the form (0.f)2. On some systems, numbers of this form cause underflow errors. The most
important subnormal number is the case where f = 0; in which case, V = ±0 depending on
the sign bit. There are similar rules for double precision numbers.

It is not critical to memorize exactly how IEEE numbers are stored. What really matters
is understanding that there are limits on what can be stored and computed. For example,
there is a minimum(non-zero) and maximum value that can be stored. The maximum value
of an IEEE 32-bit number is

0︸︷︷︸
s

11111110︸ ︷︷ ︸
e

11111111111111111111111︸ ︷︷ ︸
f

= (−1)0×2254−127×(2−2−23) ≈ 3.40×1038 (14)

The term 2− 2−23 comes from exploiting the relation for the geometric sum:

1 + a1 + a2 + · · ·+ an =
1− an+1

1− a
; (15)

i.e.,

(1.11111111111111111111111)2 = (1/2)0 + (1/2)1 + · · ·+ (1/2)23 =
1− (1/2)23+1

1− (1/2)
= 2− 2−23

(16)
The minimum(non-zero) normal number representable in IEEE single-precision is

0︸︷︷︸
s

00000001︸ ︷︷ ︸
e

00000000000000000000000︸ ︷︷ ︸
f

= (−1)0 × 21−127 × (1) ≈ 1.2 ∗ 10−38 (17)

MATLAB’s default for storing numbers is IEEE double precision floating-point format in
which there is one sign bit, 11 (biased) exponent bits, and 52 mantissa bits; the bias is 1023.
The biased exponent e is required to be in the range 0 < e < 2047 for normal numbers:

V = (−1)s × 2e−1023 × (1.f)2 . (18)

Rules for NaN, ±∞, etc. follow as above with the critical value of e being 2047 instead of
255.
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3 Finite precision of numbers

The fact that numbers are stored using a finite number of bits for the exponent and the
mantissa has important implications on the accuracy of numerical computations. It is quite
possible to have very well formulated mathematical expressions that simply do not compute
as one would expect.

Example 3 Let us consider adding a number to unity; i.e., 1 + δ. Because of the way the
numbers are stored, we could for instance obtain the seemingly odd result that 1 + δ = 1
for δ > 0. To see how this could occur we need to think about how the simple operation of
addition could be performed inside a computer. Suppose we start with the number 1; in IEEE
double precision, it has an exponent E = 0 and a biased exponent e = 1023 = (01111111111)2
and mantissa f = 0. If we are to try and make as small a change as possible to 1 we would
take the mantissa and add a “1” to the very last bit; i.e. make f = 2−52 (recall there are
52 bits in the double precision mantissa). This represents adding ≈ 2.2 × 10−16 to 1. If we
try to add a number smaller than 2−52 to 1 there are not enough mantissa bits to be able to
represent the result. The computer simply throws away these extra bits and the information
is lost. It is easy to check this fact in MATLAB with a simple program:

for ii = −50:−1:−54
if 1 == (1 + 2ˆii)

fprintf('1 + 2ˆ%d equals 1\n',ii);
else

fprintf('1 + 2ˆ%d does not equal 1\n',ii);
end

end

The output of which is

1 + 2ˆ−50 does not equal 1
1 + 2ˆ−51 does not equal 1
1 + 2ˆ−52 does not equal 1
1 + 2ˆ−53 equals 1
1 + 2ˆ−54 equals 1

The number 2−52 is known as machine epsilon; it is simply the smallest number one can
add to unity and still be able to detect it. In MATLAB machine epsilon is the pre-defined
variable eps. When represented as a base 10 number, machine epsilon≈ 2.2×10−16 and this
tells us that in general when one adds two numbers (in IEEE double precision) there are 16
(base 10) digits of accuracy in the computation; i.e. (a + a*b) == a, if b < eps.2

2To have MATLAB display more digits of a number, in the command window, you should type format

long e at the command prompt. For other printing format options type help format.
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Example 4 Consider a hypothetical computer system constructed upon a base 10 number
system that can store 3 digits in the significand (leading digit plus mantissa). Now consider
adding x = 2 = 100× 2.00 to y = 0.001 = 10−3× 1.00. In order for the computer to perform
this operation it needs to have both numbers utilizing the same exponent. This makes it
possible to directly add the significands. The computation will look like

2 . 0 0 | ×100

+ 0 . 0 0 | 1 ×100

2 . 0 0 | 1 ×100

(19)

Note that to get the exponent of y to match that of x, the 1 in necessarily shifted beyond
the 3 digits that the our hypothetical computer stores. The result will be that our computer
will tell us that x+ y is 2.00.

Example 5 As a last example consider the innocuous looking request to MATLAB:
>> 1.0 − 0.8 − 0.2. Type this into MATLAB and one finds that the result is not zero!
However >> 1.0 − 0.2 − 0.8 is zero. This occurs even though MATLAB is using 11
biased exponent bits and 52 mantissa bits. The reason becomes apparent if one carefully
looks at how these numbers are stored in IEEE format. The number 1 looks like:

0︸︷︷︸
1 bit

01111111111︸ ︷︷ ︸
11 bits

0000000000000000000000000000000000000000000000000000︸ ︷︷ ︸
52 bits

(20)

The number 0.8 appears as

0︸︷︷︸
1 bit

01111111110︸ ︷︷ ︸
11 bits

1001100110011001100110011001100110011001100110011001︸ ︷︷ ︸
52 bits

(21)

and the number 0.2 appears as

0︸︷︷︸
1 bit

01111111100︸ ︷︷ ︸
11 bits

1001100110011001100110011001100110011001100110011001︸ ︷︷ ︸
52 bits

(22)

The first thing to note is that in base 2 these decimals repeat infinitely. They can not be
stored exactly – similar to how 1/3 can not be stored exactly in a finite number of base 10
digits. When the numbers are shifted to effect the computations, bits get lost and result in
errors whereby 1.0−0.8−0.2 is not equal to 1.0−0.2−0.8. The difference however can
be determined by noting that the errors will be associated with incorrect trailing bits in the
IEEE format. In this particular case, with a bit of effort, one can show that the error occurs
in the second to last bit – the one with value 2−3 × 2−51 (−3 is the exponent for 0.2). In
fact:

>> 1.0−0.8−0.2 + 2ˆ−54
ans =

0
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One would never try to implement this type of brute force correction scheme to improve
precision as it is quite computation dependent. Instead in programs that depend upon
floating point computations, care is taken when comparing numbers to ensure that one is
not asking for precision that is not computable by the computer.

Remark: To convert a base 10 number to IEEE format one first computes the true expo-
nent as E = blog2(|x|)c. The IEEE exponent is then the binary representation of E shifted
by the bias. The mantissa can be found by reducing to normal form and subtracting the
leading 1: f = (|x|/2E)− 1. Finally the mantissa can be converted to binary by successively
subtracting powers of 2n for n ∈ {−1,−2, · · · ,−52} – a process similar to what was done in
Example 2 (but without the need for determining the digit value since it can only be 1 or 0
in a binary representation).
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