Error Estimate for Trapezoidal Rule

The integral of a function $f(x)$ over an interval (a, b) will be denoted as

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x \tag{1}
\end{equation*}
$$

The expression for the Trapezoidal rule approximation to the integral is given as

$$
\begin{equation*}
I_{T}=\frac{b-a}{2}(f(a)+f(b)) . \tag{2}
\end{equation*}
$$

Using Taylor's theorem with remainder one can show that

$$
\begin{equation*}
I-I_{T}=-\frac{f^{\prime \prime}(c) h^{3}}{12} \tag{3}
\end{equation*}
$$

where c is some (unknown) point between a and b and $h=b-a$. To be able to exploit this relation, we need to know $f^{\prime \prime}(c)$, which is not easy to know. Notwithstanding, we can estimate it in the same way as we did in our adaptive differentiation algorithm.

Consider computing the integral using a single panel of size h and then with two panels of size $h / 2$. This will give two different approximations with the exact error relations

$$
\begin{align*}
I-I_{T}(h) & =-\frac{f^{\prime \prime}\left(c_{1}\right) h^{3}}{12} \tag{4}\\
I-I_{T}(h / 2) & =-\frac{f^{\prime \prime}\left(c_{2}\right)(h / 2)^{3}}{12}-\frac{f^{\prime \prime}\left(c_{3}\right)(h / 2)^{3}}{12} \tag{5}
\end{align*}
$$

where $c_{1} \in(a, b), c_{2} \in(a, a+h / 2)$, and $c_{3} \in(a+h / 2, b)$ are all unknown. Note that by $I_{T}(h / 2)$ we mean the sum of the application of the trapezoidal rule to TWO panels of size $h / 2$. If we now subtract these two results and ASSUME that $f^{\prime \prime}(x)$ is approximately constant between a and b, then

$$
\begin{equation*}
I_{T}(h / 2)-I_{T}(h) \approx-\frac{f^{\prime \prime} h^{3}}{12}\left[1-\frac{1}{4}\right] \tag{6}
\end{equation*}
$$

Thus the error in $I_{T}(h)$ is approximately $\frac{4}{3}\left(I_{T}(h / 2)-I_{T}(h)\right)$ or, equivalently, the error in $I_{T}(h / 2)$ is approximately $\frac{1}{3}\left(I_{T}(h / 2)-I_{T}(h)\right)$. This allows us to construct a simple function that computes the integral to a "known" error tolerance via a process of recursive divide and conquer:

1. Compute approximate integral values using one panel of size h and two panels of size $h / 2$.
2. Estimate the absolute error as $\left|I_{T}(h / 2)-I_{T}(h)\right| / 3$
3. If the error satisfies a given tolerance, then return the approximation $I_{T}(h / 2)$.
4. Else, decrease h and repeat on each sub-panel.

A simple (divide-and-conquer) version looks like:

```
function I = AdaptiveTrap(f,a,b,tol)
% Usage: I = AdaptiveTrap(f,a,b,tol)
% Purpose: Compute integral of f over (a,b) with absolute tolerance of tol
Inputs: f -- function handle to f(x)
            a -- lower limit
            b -- upper limit
            tol -- absolute tolerance
Output: I = int_a^b f(x) dx to a tolerance of tol
% Call the basic trapezoidal rule with 1 and 2 panels
Ih = TrapInt(f,a,b,1);
Ih2 = TrapInt(f,a,b,2);
if abs(Ih-Ih2)/3<tol % Check if error is satisfied
    I = Ih2;
else
    m=(b+a)/2; % Create two sub-panels and recurse
    Ileft = AdaptiveTrap(f,a,m,tol/2); % Integrate left panel with half-tol
    Iright = AdaptiveTrap(f,m,b,tol/2); % Integrate right panel with half-tol
    I = Ileft + Iright; % Return the sum of the left and right panels
end
end
```

The n-panel trapezoidal rule helper function is given as:

```
function I = TrapInt(f,a,b,n)
% Usage: I = TrapInt(f,a,b,n)
% Purpose: Integrate f(x) from a to b using an n-panel trapezoidal rule
% Inputs: f -- function handle to f(x)
            a -- lower limit
            b -- upper limit
Output: I -- value of integral
x = linspace(a,b,n+1);
I = 0;
for i=1:n
    I = I + (x(i+1)-x(i)) * (f(x(i)) + f(x(i+1))) / 2;
end
end
```

