Error Estimate for Forward Differences

The expression for the FD approximation to the derivative of a function $f(x)$ at the point x_{j} is given by

$$
\begin{equation*}
\tilde{f}_{j}^{\prime}=\frac{f_{j+1}-f_{j}}{x_{j+1}-x_{j}} \tag{1}
\end{equation*}
$$

where we use superposed tildes to denote approximations. Using Taylor's theorem with remainder we have the exact result

$$
\begin{equation*}
\tilde{f}_{j}^{\prime}=f_{j}^{\prime}+f^{\prime \prime}(\theta) h / 2 \tag{2}
\end{equation*}
$$

where θ is some (unknown) point between x_{j} and x_{j+1} and $h=x_{j+1}-x_{j}$. Thus the error in using the FD formula is $f^{\prime \prime}(\theta) h / 2$. To be able to exploit this relation, we need to know $f^{\prime \prime}(\theta)$, which is not easy to know. Notwithstanding, we can estimate it.

Consider computing the derivative using a step size of h and then with a step size $h / 2$. This will give two different approximations with exact error relations

$$
\begin{align*}
\tilde{f}_{j}^{\prime}(h) & =f_{j}^{\prime}+f^{\prime \prime}(\theta) h / 2 \tag{3}\\
\tilde{f}_{j}^{\prime}(h / 2) & =f_{j}^{\prime}+f^{\prime \prime}(\bar{\theta}) h / 4 \tag{4}
\end{align*}
$$

where $\theta \in\left(x_{j}, x_{j}+h\right)$ and $\bar{\theta} \in\left(x_{j}, x_{j}+h / 2\right)$ are both unknown. If we subtract these two results and ASSUME that $f^{\prime \prime}(x)$ is approximately constant between x_{j} and x_{j+1}, then

$$
\begin{equation*}
\tilde{f}_{j}^{\prime}(h)-\tilde{f}_{j}^{\prime}(h / 2) \approx f^{\prime \prime} h / 4 \tag{5}
\end{equation*}
$$

Thus the error in $\tilde{f}_{j}^{\prime}(h)$ is approximately $2\left(\tilde{f}_{j}^{\prime}(h)-\tilde{f}_{j}^{\prime}(h / 2)\right)$ or, equivalently, the error in $\tilde{f}_{j}^{\prime}(h / 2)$ is approximately $\tilde{f}_{j}^{\prime}(h)-\tilde{f}_{j}^{\prime}(h / 2)$. This allows us to construct a simple function that computes the derivative to a "known" error tolerance. The algorithm is:

1. Compute an approximate derivative using h and $h / 2$ for step sizes.
2. Estimate the absolute error as $\left|\tilde{f}_{j}^{\prime}(h)-\tilde{f}_{j}^{\prime}(h / 2)\right|$
3. If the error satisfies a given tolerance, then return the approximation $\tilde{f}_{j}^{\prime}(h / 2)$
4. Else, decrease h and repeat.

A simple (divide-and-conquer) version would look like:

```
function df=myDer(f,x,h,tol)
% Usage: df=myDer(f,x,h,tol)
% Purpose: Estimate the f'(x) to a given tolerance
Inputs: f -- function handle
            x -- point
            h -- starting step size (guess)
            tol -- desired tolerance
Output: df -- estimate of f'(x), such that |df - f'(x)| < tol
dfh = (f(x+h)-f(x))/h;
dfh2 = (f(x+h/2)-f(x))/(h/2);
while abs(dfh-dfh2) >= tol % Check error of dfh2
    h = h/2;
    dfh = (f(x+h)-f(x))/h;
    dfh2 = (f(x+h/2)-f(x))/(h/2);
end
df=dfh2;
end
```

One can derive an identical result for the backward difference formula. For the central difference formula one has a slightly different result that can be found by re-doing the above analysis using the Taylor series with remainder expression that is appropriate for central differences; viz.,

$$
\begin{equation*}
\tilde{f}_{j}^{\prime}=f_{j}^{\prime}+f^{\prime \prime \prime}(\hat{\theta}) h^{2} / 6, \tag{6}
\end{equation*}
$$

for some $\hat{\theta} \in\left(x_{j-1}, x_{j+1}\right)$. Note that to derive this relation one needs to use the Taylor series with remainder out to third order terms.

