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1 Useful Definitions or Concepts

1.1 Objectivity
Objectivity requires that given two observers O and O+, and two events E1 and E2, they measure

• The same distance between events E1 and E2.

• The same orientation.

• The same time difference between the two events E1 and E2.

• The order in time which they are observed is the same.

This is the most general way that objectivity is defined and gives the flexibility that the two observers can be at two
different times. In continuum mechanics, it is general enough to assume that the two observers measure events at the
same time. In such a case the coordinates that the two observers measure x,x+ are related by the equation,

x+ = Q(t) (x− o) + c(t) (1)

where o defines some reference point, Q(t) an orthogonal tensor with positive determinant(to ensure that the two
observers have the same orientation), c(t) a translation. For brevity in notation, the notation for the explicit time
dependence in Q and c will be dropped.

1.1.1 Scalar values

For objectivity of a scalar value(such as the temperature of a body), the values that the two observers measure must be
the same.

f+ = f (2)

1.1.2 Vectors

Vectors in a Euclidean space are the difference between points. Let us take two points x1,x2 and their corresponding
points x+

1 ,x+
2 . They are related by,

x+
1 = Q(x1 − o) + c (3)

x+
2 = Q(x2 − o) + c . (4)

The difference between these gives,

x+
2 − x+

1 = Q(x2 − x1) (5)

which implies that vectors between the two observers are related by,

a+ = Qa . (6)
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1.1.3 2nd Order tensors

A 2nd-order tensor can be represented as the sum of tensor products of vectors. By understanding how the tensor
products are related between the observers enables one to understand the case for general 2nd-order tensors. Let
a+,b+ be vectors observed by the O+ observer and a,b the corresponding vectors for observer O.

a+ ⊗ b+ = (Qa)⊗ (Qb)
= Q(a⊗ b)QT (7)

Thus in general, a 2nd-order tensor d+ is related to d by the relation,

d+ = QdQT . (8)

1.2 Objectivity of quantaties in mechanics
In the continuum mechanics framework, the interest is to find the behaviour of the mapping ϕ that maps from a
reference configuration B to S. Given two observers O and O+ even if they are observing the same deformation of
the body, they will observe it in a different coordinate system and thus will have a seperate spatial configuration S and
S+. Thus there exist two mapping ϕ(X, t) and ϕ+(X, t). Since,

x+ = Q(x− o) + c (9)

the maps are related by,

ϕ+(X, t) = Q(ϕ(X, t)− o) + c . (10)

It is assumed that at time t = 0,

ϕ(X, 0) = X (11)
ϕ+(X, 0) = X (12)

which implies that,

Q(0) = 1 (13)
c(0) = 0 . (14)

In the spatial configuration, observers O and O+ are observing the same event and phenomena and thus the
statements made in the previous section must hold for quantaties measured by the two observers. Thus for spatial
quantities,

1. Scalar f+ = f

2. Vector a+ = Qa

3. 2nd-order Tensor d+ = QdQT

must hold for objectivity.
In the reference configuration, the observers O and O+ measure the same quantity in the same coordinates X and

thus the quantaties that they measure must agree. Denoting F,A,D as a scalar, vector, and 2nd-Order tensor in the
reference configuration, for reference quantaties,

1. Scalar F+ = F
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2. Vector A+ = A

3. 2nd-order Tensor D+ = D

must hold for objective quantaties.
For 2nd-order tensors a special situation can occure when it is defined in between the reference configuration and

spatial configuration. The deformation gradient F and 1st Piola-Kirchhoff stress tensor is an example of such a case.
Recall that these are called Two-point tensors. Let us observe what the transformation of such an element should be.
Let B be a vector defined in the reference configuration and a,a+ be a vector defined in the spatial configuration for
observer O and O+. Their tensor products are related by,

a+ ⊗B = (Qa)⊗B

= Q(a⊗B) . (15)

Thus for a two-point tensor F, objectivity requires,

F+ = QF . (16)

1.2.1 Examples

Let us look at quantaties in mechanics to see if they are objective.

• F(deformation gradient):A two-point tensor

F+ =
∂ϕ+(X, t)

∂X

=
∂x+(X, t)

∂X

=
∂x+

∂x
∂x
∂X

= QF (17)

Thus it is objective.

• J(determinant of the deformation gradient): A scalar value

J+ = det[QF]
= det[Q] det[F]
= det[F]
= J (18)

Thus it is objective.

• C(Right Cauchy deformation tensor): Defined in reference configuration.

C+ = F+,T F+

= (QF)T (QF)
= FT QT QF

= FT F

= C (19)

Thus it is objective.
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• b(Left Cauchy deformation tensor): Defined in spatial configuration.

b+ = F+F+,T

= (QF)(QF)T

= QFFT QT

= QFFT Q

= QbQT (20)

Thus it is objective.

• l(The spatial velocity gradient): Defined in the spatial configuration.

l+ = Ḟ+F+,−1

= Q̇F(QF)−1

=
(
Q̇F + QḞ

)
F−1QT

= Q̇QT + QlQT

= Q
(
QT Q̇ + l

)
QT (21)

Thus it is not objective.

• σ(Cauchy stress tensor): Defined in spatial configuration. Let df be a force acting on a surface element in the
spatial configuration. df+ and df are related by,

df+ = Qdf

t+ da+ = Qt da

σ+,T n+ da+ = QσT n da

σ+,T J+F+,−T N dA = QσT JF−T N dA

σ+,T J(QF)−T N dA = QσT JF−T N dA

σ+,T JQF−T N dA = QσT JF−T N dA

σ+,T Q = QσT

σ+,T = QσT QT (22)

Thus it is objective.

• P(1st Piola-Kirchhoff stress tensor): Two point tensor.

P+ = J+σ+F+,−T

= JQσQT (QF)−T

= JQσQT QF−T

= Q(JσF−T )
= QP (23)

Thus it is objective.
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2 Applications of definitions or concepts
Problem:

Let the reference body B be a square with unit sides. Assume that the material is homogeneous(does not depend
on X) and isotropic (the material response is the same in all directions). For such a material, by application of the
representation theorem, the constitutive law can be written as,

σ = α01 + α1b + α2b2 (24)

where,

αi = αi(Ib, IIb, IIIb) (25)
Ib = tr [b] (26)

IIb =
1
2

(
(tr [b])2 − tr

[
b2

])
(27)

IIIb = det[b] (28)

A simple shear motion will be applied,

x =

 1 γ 0
0 1 0
0 0 1

X . (29)

Compute the stresses, and confirm the Poynting effect.

Solution:

First let us compute F, b, b2,σ.

F =

 1 γ 0
0 1 0
0 0 1

 (30)

b =

 1 + γ2 γ 0
γ 1 0
0 0 1

 (31)

b2 =

 (1 + γ2)2 + γ2 γ(1 + γ2) + γ 0
γ(1 + γ2) + γ 1 + γ2 0

0 0 1

 (32)

σ =

 α0 + α1(1 + γ2) + α2(γ4 + 3γ2 + 1) α1γ + α2(γ3 + 2γ) 0
α1γ + α2(γ3 + 2γ) α0 + α1 + α2(1 + γ2) 0

0 0 α0 + α1 + α2

 (33)

If σ is normalized so that σ(F = 1) = 0, then

α0 + α1 + α2 = 0 . (34)

With this expression,

σ =

 α1(γ2) + α2(γ4 + 3γ2) α1γ + α2(γ3 + 2γ) 0
α1γ + α2(γ3 + 2γ) α2(γ2) 0

0 0 0

 . (35)
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It can be seen that simple shear in the finite deformation case does yields σ11 6= 0, σ22 6= 0. This is called the Poynting
effect. Additionally, irrelevant of the material, as long as it is isotropic,

σ11 − σ22 = γσ12 . (36)

6



ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 8

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

Problem:

Given a cylinder with radius R, length L, and density ρ0, let us spin this around the axis at a constant rate of ω.
Eventually the inertial forces will balance with the internal forces and the system will reach a steady state. The
cylinder is assumed homogenous isotropic incompressible. In this case the motion of the body can be expressed as,

x1 = λ−
1
2 (X1 cos(ωt)−X2 sin(ωt)) (37)

x2 = λ−
1
2 (X1 sin(ωt) + X2 cos(ωt)) (38)

x3 = λX3 . (39)

The steady state assumption allows us to assume that λ will not depend on time,

λ̇ = 0 . (40)

The constitutive equation is given as,

σ = −p1 + µb (41)

which is a slight modification of the representation theorem. p denotes the pressure and is included in the constitutive
equation because there is a incompressibility constraint on the material. Recall that if one had a cube of material that
is incompressible, no matter how much pressure is applied, the deformation would not change. This implies that a
pressure-deformation relationship cannot be obtained in the case of an incompressible material, and the pressure must
be defined by the boundary conditions.

The boundary conditions applied on the cylinder is zero traction on the curved side of the cylinder, and the resultant
force on the top and bottom of the cylinder is zero,

ftop =
∫

top surface
t da = 0 (42)

fbot =
∫

bottom surface
t da = 0 . (43)

Determine λ, where a λ > 1 will imply that the cylinder will have stretched in the axial direction, and λ < 1 will
imply that the cylinder is compressed in the axial direction.

Solution:
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Let us first compute the deformation gradient, stress, and spatial acceleration.

F =

 λ−
1
2 cos(ωt) −λ−

1
2 sin(ωt) 0

λ−
1
2 sin(ωt) λ−

1
2 cos(ωt) 0

0 0 λX3

 (44)

b = FT F

=

 λ−1 0 0
0 λ−1 0
0 0 λ2

 (45)

σ = −p1 + µb

=

 −p + µλ−1 0 0
0 −p + µλ−1 0
0 0 −p + µλ2

 (46)

V =

 ωλ−
1
2 (X1 sin(ωt)−X2 cos(ωt))

ωλ−
1
2 (X1 cos(ωt)−X2 sin(ωt))

0

 (47)

A =

 −ω2λ−
1
2 (X1 cos(ωt)−X2 sin(ωt))

−ω2λ−
1
2 (X1 sin(ωt) + X2 cos(ωt))

0

 (48)

a =

 −ω2x1

−ω2x2

0

 (49)

Next the equilibrium equation is used,

div [σ] = ρa . (50)

Inserting the expressions above under the assumption of homogenous deformations,

∂λ

∂xi
= 0 (51)

yields,

∂p

∂x1
= ρω2x1 (52)

∂p

∂x2
= ρω2x2 (53)

∂p

∂x3
= 0 . (54)

The third equation implies that there is no x3 dependence on p and thus from the first equation,

p(x1, x2) =
1
2
ρω2x2

1 + φ1(x2, t) . (55)

Inserting this into the second equation yields,

∂φ1

∂x2
= ρω2x2 (56)
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and integration of this equation yields,

φ1 =
1
2
ρω2x2

2 + φ(t) . (57)

Thus,

p(x1, x2) =
1
2
ρω2(x2

1 + x2
2) + φ(t)

=
1
2
ρω2r2 + φ(t) (58)

where r2 = x2
1 + x2

2. The function φ(t) is determined by the boundary conditions on the curved sides of the
cylinder(r = λ−

1
2 R).

tside = σside

[
cos θ
sin θ

]
(59)

||tside|| = 0 (60)

This yields,

−p + µλ−1 = 0 (61)

and thus,

φ(t) =
1
2
ρω2R2λ−1 + µλ−1 (62)

which determines the pressure as a function of λ. Finally to determine λ, the boundary condition at the top and bottom
of the cylinder are utilized.

ttop = σe3

= (−p(r) + µλ2)e3

ftop =
∫

top
−p(r) + µλ2 dae3

=
∫ Rλ−

1
2

0

−p(r) + µλ2 2πrdre3

=
R2µπ

λ2

[
λ3 −

(
1− 1

4
ρω2 R2

µ

)]
e3 (63)

= 0 . (64)

Since λ > 0,

λ =
[
1− 1

4
ρω2 R2

µ

]1/3

< 1 . (65)

Thus the cylinder will contract in the axial direction and get larger in the radial direction.
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3 Homework

3.1 Problem:Objectivity
Show that the quantaties R,U,V(the tensors that arise from the polar decompositions) are objective.

We have seen that the rate of deformation tensor d, which is a spatial tensor, is an objective rate. Equivalently we
can see that the material time derivative of the Green-Lagrange tensor is an objective rate since,

E+ = E (66)

and thus,

Ė+ = Ė . (67)

Similarly we can define objective stress rates. Given the Cauchy stress spatial tensor σ,

σ+ = QσQT (68)

where Q is the rotation tensor presented in the change of observer equation. Show that the material time derivative of
σ is not objective, i.e. show that,

σ̇+ 6= Qσ̇QT . (69)

Then show that,

Jaumann[σ] = σ̇ −wσ + σw (70)
Oldroyd[σ] = σ̇ − lσ − σlT (71)

which are the Jaumann stress rate and Oldroyd stress rate of the Cauchy stress tensor, are objective stress rates.
Using these objective strain and stress rates, one can describe constitutive equations which must be denoted in their

rate form.
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3.2 Problem: A rubber balloon
Consider a spherical balloon, initially with radius R and thickness T . Assume that T << R. The balloon is inflated
to a current radius of r and current thickness of t. The pressure of the gas inside of the balloon is p and the pressure
outside is zero.

pressure=p

R T

pressure=0

r

θ

φ

Figure 1: Schematic of balloon

Part 1

Compute the principal stretches in polar coordinates (λr, λφ, λθ) using symmetry arguments.

Hint:

Recall that the physical meaning of the principal stretch is,

λ =
Current length
Initial length

. (72)

Since we have spherical symmetry λφ = λθ.

Part 2

Obtain the relation,

σ =
pr

2t
(73)

under the assumption of thin shell t << r. Here, σ is the membrane tension and p is the internal pressure.

11



ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 8

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

Hint:

Cut a sphere in half and compute equilibrium between the membrane forces and pressure over the section.

Part 3

The material of the balloon will be modeled as incompressible with constitutive equation,

σ = −q1 + µb , (74)

where q is the pressure distribution inside of the thin layer of the balloon material, and µ is a material constant.
Similar to the example for the rotating cylinder, recall that when there is an incompressibility constraint, the pressure
contribution to the stress tensor σ cannot be determined by a constitutive equation and must be solved from the
boundary conditions of the problem. The q denoted here is this quantity and differs from the pressure p of the gas
inside of the balloon.

Express p in terms of T, µ,R, and V
V0

where V is the current volume of the balloon and V0 is the reference volume
of the balloon. Plot p as a function of V

V0
and comment on the meaning of the curve you obtain. You should see a peak

in the middle.

Hint:

Since we are considering spherical coordinates, the components of σ are,

σ =

 σrr σrθ σrφ

σθr σθθ σθφ

σφφ σφθ σφφ

 (75)

and the components of b are defined similarly. There is no rotational deformation in this problem, thus R in the polar
decomposition of F is equal to identity. Additionally the pricipal directions of the deformation do not change,

U =

 λr 0 0
0 λθ 0
0 0 λφ

 . (76)

Using the assumption of incompressibility(detF = 1), express σ in terms of q and λθ. Then using the assumption
that t is small, which implies that σrr = 0, express σ in terms of just λθ. Since the membrane stress σ is equal to σθθ,
obtain an expression of p in terms of T,R, µ, and λθ. Finally express p in terms of T, µ,R, and V

V0
.
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