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1 Useful Definitions or Concepts

1.1 Push-forward and pull-backs
Push-forwards and pull-backs are ways to transform an object specifed in the material configuration to one defined
in the spatial configuration and vice versa. Such a transformation allows one to work in either the material or spatial
configuration, depending on the situation. Here we will introdcue push-forwards and pull-backs for the following
cases.

• vectors

• co-vectors(linear functions which take vectors as arguments and return real numbers)

• 2nd-order tensors which take either vectors or co-vectors as arguments and return real numbers

Given a mapping ϕ from the material configuration B to the spatial configuration S, the push-forward is denoted,

ϕ∗( · ) (1)

and the pull-back is denoted,

ϕ∗( · ) . (2)

1.1.1 Vectors

The push-forward and pull-back of vectors is defined as follows,

ϕ∗(V) = FV (V ∈ TXB) (3)
ϕ∗(v) = F−1v (v ∈ Tϕ(X)S) . (4)

1.1.2 Co-vectors

Co-vectors are linear functions which take in vectors as arguments and return real numbers. They can be defined for
both the material and spatial configuration. The space of co-vectors for the material configuration is denoted,

T ∗XB (5)

and for the spatial configuration,

T ∗ϕ(X)S . (6)

Given a co-vector in the material configuration W ∈ T ∗XB, its operation on vectors V ∈ TXB is defined as,

W(V) := W ·V ∈ R . (7)

For co-vectors in the spatial configuration w ∈ T ∗ϕ(X)S, their operation on vector v ∈ Tϕ(X)S is defined as,

w(v) := w · v ∈ R . (8)

The push-forward and pull-back of co-vectors is defined as,

ϕ∗(W) = F−T W (W ∈ T ∗XB) (9)
ϕ∗(w) = FT w (w ∈ T ∗ϕ(X)S) . (10)
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1.1.3 2nd-order tensors

A tensor can be defined to takes either vectors or co-vectors as arguments, and can be defined either in the material or
spatial configuration. This gives 4 possibilities for the form of the 2nd-order tensors.

1. σ : TXB × TXB 7−→ R

2. σ : Tϕ(X)S × Tϕ(X)S 7−→ R

3. σ : T ∗XB × T ∗XB 7−→ R

4. σ : T ∗ϕ(X)S × T ∗ϕ(X)S 7−→ R

1,2 are the push-forward and pull-back of tensors acting on vectors and can be considered one pair.

1. ϕ∗(σ) = F−T σF−1

2. ϕ∗(σ) = FT σF

3,4 are the push-forward and pull-back of tensors acting on co-vectors and can be considered another pair.

3. ϕ∗(σ) = FσFT

4. ϕ∗(σ) = F−1σF−T

1.2 The Lie derivative
The Lie derivative of a spatial tensor is defined as follows.

Lv( · ) = ϕ∗

(
D

Dt
(ϕ∗( · ))

)
(11)

1.3 Spatial velocity gradient and rates
Given the spatial velocity v, the spatial velocity gradient l is defined as,

l =
∂v
∂x

(12)

=
∂v
∂X

∂X
∂x

=
∂ϕ̇

∂X
∂X
∂x

= ḞF−1 . (13)

The spatial velocity gradient gives information concerning the instantaneous change of the motion. l can be decom-
posed into its symmetric part d (rate of deformation tensor) and skew part w (spin tensor).

l = d + w (14)

As the name suggests, the rate of deformation tensor contains information concerning the rate at which the material
locally deforms, and the spin tensor contains information concerning the rate of rotation.

• The eigenvalues of d denote the rate of stretch along the direction of the eigenvectors of d.

• The axial vector w denotes the axis and rate of the rotation.

The action of l can be interpreted by as a pure triaxial stretch in the direction of the eigenvectors of d and a rigid
rotation around the axial vector of w.
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2 Homework

2.1 Quantaties related to rates
Problem:

Given the spin tensor w, show that its axial vector ω defined as,

wa = ω × a (15)

can be represented as,

ω =
1
2

curlv . (16)

This shows that the axial vector of the spin tensor is half of the vorticity.

Solution:

Let a be and arbitrary vector. We have,

wa =
1
2
(
l + lT

)
a

=
1
2

(
∂v
∂x

+
(

∂v
∂x

)T
)

a

wijaj =
1
2

(vi,j + vj,i) aj (17)

and,

ω × a =
1
2

curlv × a

=
1
2

(∇× v)× a

=
1
2

(vj,iεijkek)× alel

=
1
2
vj,ialεijkεklmem

=
1
2
vj,ialεijkεlmkem

=
1
2
vj,ial (δilδjm − δimδjl) em

=
1
2

(vm,lal − vl,mal) em

=
1
2

(vm,l − vl,m) alem

(ω × a)m =
1
2

(vm,l − vl,m) al . (18)

This shows that the expressions are equivalent.

Problem:
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Show that,

ḋa = (trl− n · ln) da (19)
ṅ = (n · ln)n− lT n (20)

where da is a spatial area element and n is the unit normal to this surface element. Recall that we have the relation
from Nansons’s formula relating the material and spatial area elements and normals.

nda = JF−T NdA . (21)

Hint: Express da in terms of quantaties J,N,C,N, dA and take a material time derivative. Recall that the material
time derivatives of N, dA are zero. Do the calculation in symbolic notation. It can become quite messy if you try this
in index notation.

Solution:

Using Nanson’s formula,

nda · nda =
(
JF−T NdA

)
·
(
JF−T NdA

)
da2 = J2F−T N · F−T NdA2

= J2N · F−1F−T NdA2 . (22)

Since,

˙
F−1 = −F−1ḞF−1 (23)
˙

F−1F−T = −F−1F−T ḞT F−T − F−1ḞF−1F−T

= −F−1
(
lT + l

)
F−T

= −2F−1dF−T (24)

J̇ =
∂J

∂F
: Ḟ

= JF−T : Ḟ
= J1 : ḞF−1

= J1 : l
= J trl (25)

taking a material time derivative of the expression for da2 yields,

2daḋa = 2JJ̇N · F−1F−T NdA2 + J2N · ˙(F−1F−T )NdA2

= 2J2trl N · F−1F−T NdA2 − 2J2N · F−1dF−T NdA2

= 2tr l da2 − 2J2F−T N · dF−T NdA2

= 2trl da2 − 2
(
JF−T NdA

)
· d
(
JF−T NdA

)
= 2trl da2 − 2nda · dnda

ḋa = trlda− n · dnda

= (trl− n · dn) da

= (trl− n · ln) da . (26)
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In the equation n · ln = n · dn, since w is skew.
Next we take the material time derivative of nda.

˙nda = ˙
JF−T NdA

ṅda + nḋa = J̇F−T NdA + J
˙F−T NdA

= J trl F−T NdA− JF−T ḞT F−T NdA

= trl nda− JlT F−T NdA

= trl nda− lT nda

ṅda + n (trl− n · ln) da = trl nda− lT nda

ṅda = n · lnda− lT nda

ṅ = n · ln− lT n . (27)

Remark:

In this problem it must be pointed out that the normal vector n is in fact not a vector but has the properties of a
co-vector. Thus it does not transform the in the same manner as a vector, and the relationship,

ȧ = la (28)

does not hold. The normal vector is and co-vector and given a normal vector B in the reference configuration, it is
mapped to b in the spatial configuration as,

b = F−T B . (29)

This can be seen by the following example of simple shear in 2D.

B1

B2

b 1

b 2

g

X1

X2

x 1

x 2

Figure 1: Simple shear
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The motion and deformation gradient are given as,[
x1

x2

]
=

[
1 γ
0 1

] [
X1

X2

]
F =

[
1 γ
0 1

]
F−T =

[
1 0
−γ 1

]
.

Denote the normal to the right edge of the square as B1 and the top edge as B2.

B1 =
[

1
0

]
B2 =

[
0
1

]
Then,

FB1 =
[

1
0

]
FB2 =

[
γ
1

]
F−T B1 =

[
1
−γ

]
F−T B2 =

[
0
1

]
Clearly the objects mapped with F do not represent the normal vectors in the spatial configuration. On the contrary
the F−T gives the correct result.

Another interpretation of the surface normal as a co-vector follows from the following. Let A be a tangent vector,
and B be the normal to this. Then, A ·B = 0. Let a,b be the mapped versions in the spatial configuration. a · b = 0
is desired. For this,

0 = a · b
= FA · b
= A · FT b (30)

and,

B = FT b

b = F−T B . (31)

Thus it is clear that normal vectors map as co-vectors with F−T . The transformation for objects that are tangent to
lines and objects that are normal to lines are different.

Let us compute the relation between the time rate change of a co-vector and the co-vector.

ḃ =
D

Dt
(F−T B)

= ˙F−T B

= −F−T ḞT F−T B

= −lT b (32)
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Thus the mapping is given with −lT and not l.
The time rate of change for vectors and co-vectors that are constrained to unity are slightly different from the case

for arbitrary vectors. Recall that for a unit vector m the mapping is given not by,

ṁ = lm (33)

but by

ṁ = (l−m · lm1)m . (34)

This can be interpreted as a mapping by l and then a modification made to retain orthogonality with m so that m ·ṁ =
0.

lm

m

m lm

m

Figure 2: Time rate of change of vector

The time rate of change for co-vectors can be obtained similarly to the case of vectors. Let,

b = n ds (35)

where n is a unit vector pointing in the direction of b and ds is its length. For the vector b,

ḃ = −lT b
˙n ds = −lT n ds

ṅ ds + nḋs = −lT n ds . (36)

Taking the inner the product with n and using the relation ṅ · n = 0, one obtains,

nḋs = −n · lT n ds. (37)

Reinserting this into eqn. (36), one obtains

ṅ ds + n(−n · lT n) ds = −lT n ds

ṅ = −lT n− n(−n · lT n)
ṅ =

(
−lT − n · (−lT )n

)
1)n . (38)

This equation resembles closely the case for vectors but with the operator l replaced by −lT .
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Problem:

A deformation which is volume preserving is called isochoric or incompressible. The following are all criterion for
isochoric motion.

J = 1 (39)
J̇ = 0 (40)

F−T : Ḟ = 0 (41)
trl = 0 (42)

trd = 0 (43)
divv = 0 (44)

Explain why these expressions are equivalent. In other words give the reason why one criterion implies the other word.
Then show that the time rate of change of a volume element dv in the spatial configuration is given by the following

expression.

ḋv = tr(l)dv (45)
= tr(d)dv (46)

Hint: State the relation between the spatial volume element dv and the material volume element dV . Then take a
material time derivative of this expression.

Solution:

Volume is preserved in the motion if,

J = detF = 1 . (47)

Alternatively,

0 = J̇

= JF−T : Ḟ
= J1 : ḞF−T

= J trl
= J trd
= Jdivv . (48)

Thus the following criterion are equivalent,

J = 1 (49)
J̇ = 0 (50)

F−T : Ḟ = 0 (51)
trl = 0 (52)

trd = 0 (53)
divv = 0 (54)
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By taking a derivative of the relation between the spatial and material volume elements.

ḋv = ˙JdV

= J̇dV

= JF−T : ḞdV

= F−T : Ḟdv

= 1 : ḞF−1dv

= tr(l)dv (55)
= tr(d)dv (56)

The last line is true since trw, the trace of the spin tensor, is zero. Thus we see that the relative change in volume is
given by the trace of the rate of deformation tensor.
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