ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 4

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

1 Useful Definitions or Concepts

1.1 Material and Spatial Descriptions

Functions can have arguments which depend on material description \mathbf{X} and spatial description \mathbf{x}. They can be transformed from one to the other through the mapping,

$$
\begin{align*}
\mathbf{x} & =\varphi(\mathbf{X}, t) \tag{1}\\
\mathbf{X} & =\varphi^{-1}(\mathbf{x}, t) \tag{2}
\end{align*}
$$

between the two configurations. Using this relation, any function can be written in both descriptions. Let $F(\mathbf{X})$ be a scalar-valued function in the material description. If we define the name of the spatial version as $f(\mathbf{x})$, then the relation between these becomes,

$$
\begin{equation*}
f(\mathbf{x})=F\left(\varphi^{-1}(\mathbf{x})\right) \tag{3}
\end{equation*}
$$

The velocity and acceleration are defined as follows,

$$
\begin{align*}
\mathbf{V}(\mathbf{X}, t) & =\left(\frac{\partial \varphi(\mathbf{X}, t)}{\partial t}\right)_{\mathbf{x}} \tag{4}\\
\mathbf{A}(\mathbf{X}, t) & =\left(\frac{\partial \mathbf{V}(\mathbf{X}, t)}{\partial t}\right)_{\mathbf{x}} \\
& =\left(\frac{\partial^{2} \varphi(\mathbf{X}, t)}{\partial^{2} t}\right)_{\mathbf{x}} \tag{5}
\end{align*}
$$

by taking time derivatives of the mapping. These functions can also be expressed in terms of the spatial description by inserting the inverse mapping,

$$
\begin{align*}
& \mathbf{v}(\mathbf{x}, t)=\mathbf{V}\left(\varphi^{-1}(\mathbf{x}, t), t\right) \tag{6}\\
& \mathbf{a}(\mathbf{x}, t)=\mathbf{A}\left(\varphi^{-1}(\mathbf{x}, t), t\right) \tag{7}
\end{align*}
$$

What one would like to point out is that,

$$
\begin{equation*}
\mathbf{a}(\mathbf{x}, t) \neq\left(\frac{\partial \mathbf{v}(\mathbf{x}, t)}{\partial t}\right)_{\mathbf{x}} \tag{8}
\end{equation*}
$$

1.2 Material and Spatial Time derivatives

When taking the time derivative of a function F, we can take a material time derivative or a spatial time derivative.

- Material: Put a dot over the function, or use Upper Case "D".

$$
\begin{equation*}
\left(\frac{\partial F}{\partial t}\right)_{\mathbf{x}}=\dot{F}=\frac{D F}{D t} \tag{9}
\end{equation*}
$$

- Spatial: Put a ${ }^{\prime}$ by the function, or just use " ∂ ".

$$
\begin{equation*}
\left(\frac{\partial F}{\partial t}\right)_{\mathbf{x}}=F^{\prime}=\frac{\partial F}{\partial t} \tag{10}
\end{equation*}
$$

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 4

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

The case where we take a material time derivative of a function expressed in spatial description is slightly more involved.

$$
\begin{align*}
\left(\frac{\partial F(\mathbf{x}, t)}{\partial t}\right)_{\mathbf{x}} & =\left(\frac{\partial F(\varphi(\mathbf{X}, t), t)}{\partial t}\right)_{\mathbf{x}} \\
& =\left(\frac{\partial F(\varphi(\mathbf{X}, t), t)}{\partial t}\right)_{\mathbf{x}}+\left(\frac{\partial F(\varphi(\mathbf{X}, t), t)}{\partial \mathbf{x}}\right)_{t}\left(\frac{\partial \mathbf{x}(\mathbf{X}, t)}{\partial t}\right)_{\mathbf{x}} \\
& =\left(\frac{\partial F(\varphi(\mathbf{X}, t), t)}{\partial t}\right)_{\mathbf{x}}+\left(\frac{\partial F(\varphi(\mathbf{X}, t), t)}{\partial \mathbf{x}}\right)_{t} \cdot \mathbf{V}(\mathbf{X}, t) \\
& =\left(\frac{\partial F(\mathbf{x}, t)}{\partial t}\right)_{\mathbf{x}}+\left(\frac{\partial F(\mathbf{x}, t)}{\partial \mathbf{x}}\right)_{t} \cdot \mathbf{v}(\mathbf{x}, t) \tag{11}
\end{align*}
$$

1.2.1 The inverse of the deformation gradient

Let a motion φ be given that maps points from the material configuration \mathcal{B} to the spatial configuration \mathcal{S}.

$$
\begin{equation*}
\varphi: \mathcal{B} \rightarrow \mathcal{S} \tag{12}
\end{equation*}
$$

The deformation gradient for this motion is,

$$
\begin{equation*}
\mathbf{F}=\frac{\partial \varphi}{\partial \mathbf{X}} \tag{13}
\end{equation*}
$$

Since we assume that the motion is one-one and onto,

- One-one: Two points from \mathcal{B} do not go to the same point in \mathcal{S}. This physically means that the material does not overlap itself.
- Onto: Everypoint in \mathcal{S} comes from some point in \mathcal{B}. This physically means that points in \mathcal{S} are not magically generated from nowhere and always must come from some point in \mathcal{B}.
we can define the inverse $\operatorname{map} \varphi^{-1}$,

$$
\begin{equation*}
\mathbf{X}=\varphi^{-1}(\mathbf{x}) \tag{14}
\end{equation*}
$$

By differentiating this expression with respect to \mathbf{x} we have,

$$
\begin{equation*}
\frac{\partial \mathbf{X}}{\partial \mathbf{x}}=\frac{\partial \varphi^{-1}}{\partial \mathbf{x}} \tag{15}
\end{equation*}
$$

From the relation between the mapping and inverse mapping, we can write the two expressions,

$$
\begin{align*}
\varphi^{-1}(\varphi(\mathbf{X})) & =\mathbf{X} \tag{16}\\
\varphi\left(\varphi^{-1}(\mathrm{x})\right) & =\mathbf{x} \tag{17}
\end{align*}
$$

Let us differentiate the first expression by \mathbf{X}. By chain rule,

$$
\begin{align*}
\frac{\partial \varphi^{-1}}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\varphi \mathbf{X}} & =\mathbf{1} \\
\frac{\partial \varphi^{-1}}{\partial \mathbf{x}} \mathbf{F} & = \\
\frac{\partial \mathbf{X}}{\partial \mathbf{x}} \mathbf{F} & = \tag{18}
\end{align*}
$$

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 4
Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

If we diffentiate the second expression by \mathbf{x} we have,

$$
\begin{align*}
\frac{\partial \varphi}{\partial \mathbf{X}} \frac{\partial \mathbf{X}}{\partial \mathbf{x}} & =\mathbf{1} \\
\mathbf{F} \frac{\partial \mathbf{X}}{\partial \mathbf{x}} & = \tag{19}
\end{align*}
$$

These two relations imply that,

$$
\begin{align*}
\mathbf{F}^{-1} & =\frac{\partial \mathbf{X}}{\partial \mathbf{x}} \tag{20}\\
& =\frac{\partial \varphi^{-1}}{\partial \mathbf{x}} \tag{21}
\end{align*}
$$

1.2.2 Interpretation of deformation gradient

Figure 1: The mapping between tangent spaces
Let a motion φ be given that maps points from the material configuration \mathcal{B} to the spatial configuration \mathcal{S}.

$$
\begin{equation*}
\varphi: \mathcal{B} \rightarrow \mathcal{S} \tag{22}
\end{equation*}
$$

The important interpretation of the deformation gradient,

$$
\begin{equation*}
\mathbf{F}=\frac{\partial \varphi}{\partial \mathbf{X}} \tag{23}
\end{equation*}
$$

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 4

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee
is that it maps vectors from the material configuration to the spatial configuration. To say this a little more precisely we introduce the notation of a "Tangent Space".

$$
\begin{equation*}
T_{\mathrm{X}} \mathcal{B}: \text { vectors eminating from the point } \mathrm{x} \text { in the space } \mathrm{B} \tag{24}
\end{equation*}
$$

With this the deformation gradient can be expressed as,

$$
\begin{equation*}
\mathbf{F}(\mathbf{X}): T_{\mathbf{X}} \mathcal{B} \rightarrow T_{\boldsymbol{\varphi}(\mathbf{X})} \mathcal{S} \tag{25}
\end{equation*}
$$

such that,

$$
\begin{equation*}
\mathbf{F}: \mathbf{v} \longmapsto \mathbf{F v} \tag{26}
\end{equation*}
$$

The inverse of the deformation gradient \mathbf{F}^{-1} does the opposite,

$$
\begin{equation*}
\mathbf{F}^{-1}(\mathbf{x}): \quad T_{\mathbf{x}} \mathcal{S} \rightarrow T_{\boldsymbol{\varphi}^{-1}(\mathbf{x})} \mathcal{B} \tag{27}
\end{equation*}
$$

such that,

$$
\begin{equation*}
\mathbf{F}^{-1}: \mathbf{w} \longmapsto \mathbf{F}^{-1} \mathbf{w} \tag{28}
\end{equation*}
$$

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 4

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

1.3 Applications of concepts or definitions

Problem:

Given the rigid body motion,

$$
\begin{align*}
\mathbf{x} & =\boldsymbol{\varphi}(\mathbf{X}, t) \\
& =\mathbf{Q}(t) \mathbf{X}+c(t) \tag{29}
\end{align*}
$$

compute the material velocity \mathbf{V}, material acceleration \mathbf{A}, spatial velocity \mathbf{v}, and spatial acceleration \mathbf{a}. Confirm the relation between the material time derivative and the spatial time derivative of the spatial velocity.

Solution:

The material velocity and acceleration can be obtained from sequentially taking the material time derivative of the motion φ.

$$
\begin{align*}
\mathbf{V}(\mathbf{X}, t) & =\left(\frac{\partial \boldsymbol{\varphi}(\mathbf{X}, t)}{\partial t}\right)_{\mathbf{X}} \\
& =\dot{\mathbf{Q}}(t) \mathbf{X}+\dot{c}(t) \tag{30}\\
\mathbf{A}(\mathbf{X}, t) & =\left(\frac{\partial \mathbf{V}(\mathbf{X}, t)}{\partial t}\right)_{\mathbf{X}} \\
& =\left(\frac{\partial \dot{\boldsymbol{\varphi}}(\mathbf{X}, t)}{\partial t}\right)_{\mathbf{x}} \\
& =\ddot{\mathbf{Q}}(t) \mathbf{X}+\ddot{c}(t) \tag{31}
\end{align*}
$$

Given the motion, the material coordinates \mathbf{X} can be expressed in terms of the spatial coordinates \mathbf{x} by inverting the mapping φ,

$$
\begin{align*}
\mathbf{X}(\mathbf{x}, t) & =\boldsymbol{\varphi}^{-1}(\mathbf{x}, t) \\
& =\mathbf{Q}^{-1}(\mathbf{x}-\mathbf{c}(t)) \\
& =\mathbf{Q}^{T}(\mathbf{x}-\mathbf{c}(t)) \tag{32}
\end{align*}
$$

Using this relationship, we obtain the desired quantaties,

$$
\begin{align*}
\mathbf{v}(\mathbf{x}, t) & =\mathbf{V}\left(\boldsymbol{\varphi}^{-1}(\mathbf{x}, t), t\right) \\
& =\dot{\mathbf{Q}}(t) \mathbf{Q}^{T}((\mathbf{x}-c(t))+\dot{c}(t) \\
\mathbf{a}(\mathbf{x}, t) & =\mathbf{A}\left(\boldsymbol{\varphi}^{-1}(\mathbf{x}, t), t\right) \\
& =\ddot{\mathbf{Q}}(t) \mathbf{Q}^{T}((\mathbf{x}-c(t))+\ddot{c}(t) \tag{33}
\end{align*}
$$

Next we confirm the relation,

$$
\begin{align*}
\left(\frac{\partial \mathbf{v}}{\partial t}\right)_{\mathbf{x}} & =\left(\frac{\partial \mathbf{v}}{\partial t}\right)_{\mathbf{x}}+\left(\frac{\partial \mathbf{v}}{\partial \mathbf{x}}\right)_{t}\left(\frac{\partial \mathbf{x}}{\partial t}\right)_{\mathbf{x}} \\
& =\left(\frac{\partial \mathbf{v}}{\partial t}\right)_{\mathbf{x}}+\left(\frac{\partial \mathbf{v}}{\partial \mathbf{x}}\right)_{t} \cdot \mathbf{v} \tag{34}
\end{align*}
$$

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 4

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

From the computations above we have,

$$
\begin{align*}
\left(\frac{\partial \mathbf{v}(\mathbf{x}, t)}{\partial t}\right)_{\mathbf{x}} & =\left(\frac{\partial \mathbf{V}(\mathbf{X}, t)}{\partial t}\right)_{\mathbf{x}} \\
& =\mathbf{a}(\mathbf{x}, t) \\
& =\ddot{\mathbf{Q}}(t) \mathbf{Q}^{T}(\mathbf{x}-c(t))+\ddot{c}(t) \tag{35}
\end{align*}
$$

For the left hand side of the equation,

$$
\begin{align*}
\left(\frac{\partial \mathbf{v}}{\partial t}\right)_{\mathbf{x}}+\left(\frac{\partial \mathbf{v}}{\partial \mathbf{x}}\right)_{t} \cdot \mathbf{v}= & \left(\frac{\partial\left(\dot{\mathbf{Q}}(t) \mathbf{Q}^{T}(\mathbf{x}-c(t))+\dot{c}(t)\right)}{\partial t}\right)_{\mathbf{x}} \\
& +\left(\frac{\partial\left(\dot{\mathbf{Q}}(t) \mathbf{Q}^{T}(\mathbf{x}-c(t))+\dot{c}(t)\right)}{\partial \mathbf{x}}\right)_{\mathbf{t}}\left(\dot{\mathbf{Q}}(t) \mathbf{Q}^{T}(\mathbf{x}-c(t))+\dot{c}(t)\right) \\
= & \left(\ddot{\mathbf{Q}}(t) \mathbf{Q}^{T}(\mathbf{x}-c(t))+\dot{\mathbf{Q}}(t) \dot{\mathbf{Q}}^{T}(\mathbf{x}-c(t))+\dot{\mathbf{Q}}(t) \mathbf{Q}^{T}((-\dot{c}(t))+\ddot{c}(t))\right. \\
& +\left(\dot{\mathbf{Q}}(t) \mathbf{Q}^{T}\right)\left(\dot{\mathbf{Q}}(t) \mathbf{Q}^{T}((\mathbf{x}-c(t))+\dot{c}(t))\right) \\
= & \left(\ddot{\mathbf{Q}}(t) \mathbf{Q}^{T}+\dot{\mathbf{Q}}(t) \dot{\mathbf{Q}}^{T}\right)(\mathbf{x}-c(t))-\dot{\mathbf{Q}}(t) \mathbf{Q}^{T} \dot{c}(t)+\ddot{c}(t) \\
& +\dot{\mathbf{Q}}(t) \mathbf{Q}^{T} \dot{\mathbf{Q}}(t) \mathbf{Q}^{T}(\mathbf{x}-c(t))+\dot{\mathbf{Q}}(t) \mathbf{Q}^{T} \dot{c}(t) \tag{36}
\end{align*}
$$

For an orthogonal tensor $\mathbf{Q}(t)$ we have,

$$
\begin{equation*}
\mathbf{Q}(t) \mathbf{Q}^{T}(t)=\mathbf{1} \tag{37}
\end{equation*}
$$

and if we differentiate this relationship with respect to time we obtain,

$$
\begin{align*}
\dot{\mathbf{Q}}(t) \mathbf{Q}^{T}(t)+\mathbf{Q}(t) \dot{\mathbf{Q}}^{T}(t) & =\mathbf{0} \\
\dot{\mathbf{Q}}(t) \mathbf{Q}^{T}(t) & =-\mathbf{Q}(t) \dot{\mathbf{Q}}^{T}(t) \\
\dot{\mathbf{Q}}(t) \mathbf{Q}^{T}(t) & =-\left(\dot{\mathbf{Q}}(t) \mathbf{Q}^{T}(t)\right)^{T} . \tag{38}
\end{align*}
$$

We see that $\dot{\mathbf{Q}}(t) \mathbf{Q}^{T}(t)$ is a skew tensor. Inserting this relationship in eqn. (36),

$$
\begin{align*}
\left(\frac{\partial \mathbf{v}}{\partial t}\right)_{\mathbf{x}}+\left(\frac{\partial \mathbf{v}}{\partial \mathbf{x}}\right)_{t} \cdot \mathbf{v}= & \left(\ddot{\mathbf{Q}}(t) \mathbf{Q}^{T}+\dot{\mathbf{Q}}(t) \dot{\mathbf{Q}}^{T}\right)(\mathbf{x}-c(t))-\dot{\mathbf{Q}}(t) \mathbf{Q}^{T} \dot{c}(t)+\ddot{c}(t) \\
& +\dot{\mathbf{Q}}(t) \mathbf{Q}^{T} \dot{\mathbf{Q}}(t) \mathbf{Q}^{T}(\mathbf{x}-c(t))+\dot{\mathbf{Q}}(t) \mathbf{Q}^{T} \dot{c}(t) \\
= & \left(\ddot{\mathbf{Q}}(t) \mathbf{Q}^{T}+\dot{\mathbf{Q}}(t) \dot{\mathbf{Q}}^{T}\right)(\mathbf{x}-c(t))+\ddot{c}(t) \\
& -\dot{\mathbf{Q}}(t) \mathbf{Q}^{T} \mathbf{Q} \dot{\mathbf{Q}}^{T}(t)(\mathbf{x}-c(t)) \\
= & \left(\ddot{\mathbf{Q}}(t) \mathbf{Q}^{T}+\dot{\mathbf{Q}}(t) \dot{\mathbf{Q}}^{T}\right)(\mathbf{x}-c(t))+\ddot{c}(t) \\
& -\dot{\mathbf{Q}}(t) \dot{\mathbf{Q}}^{T}(t)(\mathbf{x}-c(t)) \\
= & \left(\ddot{\mathbf{Q}}(t) \mathbf{Q}^{T}\right)(\mathbf{x}-c(t))+\ddot{c}(t) . \tag{39}
\end{align*}
$$

Thus the relation between the material and spatial time derivatives have been confirmed.

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 4

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

Problem:

What is the relation between the vector between two points in the material configuration \mathbf{X}, \mathbf{Y}, and the vector between the mapped points \mathbf{x}, \mathbf{y} in the spatial configuration. Show that when the distance between \mathbf{X} and \mathbf{Y} is "small", that,

$$
\begin{equation*}
\mathbf{y}-\mathbf{x} \approx \mathbf{F}(\mathbf{Y}-\mathbf{X}) \tag{40}
\end{equation*}
$$

Figure 2: Mapping of vectors

Solution:

Let us define the vector between \mathbf{X} and \mathbf{Y} as,

$$
\begin{equation*}
\alpha \mathbf{h}=\mathbf{Y}-\mathbf{X} \tag{41}
\end{equation*}
$$

Then using Taylor series expansion with respect to α,

$$
\begin{align*}
\mathbf{y}-\mathbf{x} & =\boldsymbol{\varphi}(\mathbf{Y})-\boldsymbol{\varphi}(\mathbf{X}) \\
& =\boldsymbol{\varphi}(\mathbf{X}+\alpha \mathbf{h})-\varphi(\mathbf{X}) \\
& =\boldsymbol{\varphi}(\mathbf{X})+\frac{\partial \varphi}{\partial \mathbf{X}} \alpha \mathbf{h}+O\left(\alpha^{2}\right)-\varphi(\mathbf{X}) \\
& =\frac{\partial \varphi}{\partial \mathbf{X}} \alpha \mathbf{h}+O\left(\alpha^{2}\right) \\
& =\mathbf{F} \alpha \mathbf{h}+O\left(\alpha^{2}\right) \tag{42}
\end{align*}
$$

When the distance between \mathbf{X} and \mathbf{Y} is small, i.e. $\alpha \ll 1$, we can neglect $O\left(\alpha^{2}\right)$ compared to α, and,

$$
\begin{equation*}
\mathbf{y}-\mathbf{x} \approx \mathbf{F}(\mathbf{Y}-\mathbf{X}) \tag{43}
\end{equation*}
$$

From this we observe that, any vector in the material configuration is approximately mapped to the spatial configuration by the deformation gradient \mathbf{F}.

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 4

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

Problem:

Give an interpretation of the right and left polar decomposition of the deformation gradient.

$$
\begin{align*}
\mathbf{F} & =\mathbf{R U} \tag{44}\\
& =\mathbf{V R} \tag{45}
\end{align*}
$$

Solution:

Let us assume a hypothetical 2-D problem where we have a motion that maps a square having sides of unit length, to a slightly rotated rectangle with sides of λ. A schematic is shown in the figure below. The deformation gradient maps a

Figure 3: Interpretation of right polar decomposition
vector \mathbf{v} to $\mathbf{F v}$. If we consider the right polar decomposition, this mapping can be decomposed into two maps, first an application of \mathbf{U}, followed by \mathbf{R}. \mathbf{U} simply stretches the square, then \mathbf{R} rotates the body into the final configuration.

Alternatively, if we consider the left polar decomposition, this mapping can be decomposed into two maps, first an application of \mathbf{R}, followed by \mathbf{V}. \mathbf{R} rotates the body into the proper orientation, then \mathbf{V} simply stretches the square. This is depicted in the figure below.

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 4

Institute for Mechanical Systems Center of Mechanics

Prof. Dr. Sanjay Govindjee

Figure 4: Interpretation of left polar decomposition

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 4

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

Problem:

Define the displacement vector \mathbf{u} as,

$$
\begin{equation*}
\mathbf{u}=\mathbf{x}-\mathbf{X} \tag{46}
\end{equation*}
$$

Linearize the Green-Lagrange strain tensor,

$$
\begin{equation*}
\mathbf{E}=\frac{1}{2}\left(\mathbf{F}^{T} \mathbf{F}-\mathbf{1}\right) \tag{47}
\end{equation*}
$$

and Almansi strain tensor

$$
\begin{equation*}
\mathbf{e}=\frac{1}{2}\left(\mathbf{1}-\mathbf{F}^{-T} \mathbf{F}-1\right) \tag{48}
\end{equation*}
$$

around zero displacement and show that they match the infinitesimal strain tensor,

$$
\begin{equation*}
\varepsilon=\frac{1}{2}\left(\nabla_{\mathbf{X}} \mathbf{u}+\left(\nabla_{\mathbf{X}} \mathbf{u}\right)^{T}\right) \tag{49}
\end{equation*}
$$

Solution:

If we take a derivative of eqn. (46) with respect to \mathbf{X},

$$
\begin{align*}
\frac{\partial \mathbf{u}}{\partial \mathbf{X}} & =\frac{\partial \mathbf{x}}{\partial \mathbf{X}}-\mathbf{1} \\
\nabla_{\mathbf{x}} \mathbf{u} & =\mathbf{F}-\mathbf{1} \tag{50}
\end{align*}
$$

Inserting this relationship into eqn. (47),

$$
\begin{equation*}
\mathbf{E}=\frac{1}{2}\left(\nabla_{\mathbf{X}} \mathbf{u}+\left(\nabla_{\mathbf{X}} \mathbf{u}\right)^{T}+\left(\nabla_{\mathbf{X}} \mathbf{u}\right)^{T} \nabla_{\mathbf{X}} \mathbf{u}\right) \tag{51}
\end{equation*}
$$

We look at \mathbf{E} as a function with argument \mathbf{u}, i.e. $\mathbf{E}(\mathbf{u})$, and linearize at $\mathbf{0}$ in the direction of the displacment \mathbf{h},

$$
\begin{align*}
D \mathbf{E}(\mathbf{0})[\mathbf{h}] & =\left.\frac{d}{d \alpha}\right|_{\alpha=0} \mathbf{E}(\mathbf{0}+\alpha \mathbf{h}) \\
& =\left.\frac{d}{d \alpha}\right|_{\alpha=0} \frac{1}{2}\left(\alpha \nabla_{\mathbf{X}} \mathbf{h}+\alpha\left(\nabla_{\mathbf{X}} \mathbf{h}\right)^{T}+\alpha^{2}\left(\nabla_{\mathbf{X}} \mathbf{h}\right)^{T} \nabla_{\mathbf{X}} \mathbf{h}\right) \\
& =\frac{1}{2}\left(\nabla_{\mathbf{x}} \mathbf{h}+\left(\nabla_{\mathbf{X}} \mathbf{h}\right)^{T}\right) . \tag{52}
\end{align*}
$$

This shows that near $\mathbf{0}$, the Green-Lagrange strain tensor depends linearly on the displacement \mathbf{h} in the same manner as the infinitesimal strain tensor.

Inserting eqn. (50) into relationship eqn. (48),

$$
\begin{equation*}
\mathbf{e}=\frac{1}{2}\left(\mathbf{1}-\left(\mathbf{1}+\nabla_{\mathbf{X}} \mathbf{u}\right)^{-T}\left(\mathbf{1}+\nabla_{\mathbf{X}} \mathbf{u}\right)^{-1}\right) \tag{53}
\end{equation*}
$$

We look at \mathbf{e} as a function with manner to \mathbf{u},i.e. $\mathbf{e}(\mathbf{u})$, and linearize at $\mathbf{0}$ in the direction of the displacment \mathbf{h},

$$
\begin{align*}
D \mathbf{e}(\mathbf{0})[\mathbf{h}] & =\left.\frac{d}{d \alpha}\right|_{\alpha=0} \frac{1}{2}\left(\mathbf{1}-\left(\mathbf{1}+\alpha \nabla_{\mathbf{x}} \mathbf{h}\right)^{-T}\left(\mathbf{1}+\alpha \nabla_{\mathbf{x}} \mathbf{h}\right)^{-1}\right) \\
& =-\left.\frac{1}{2}\left(\frac{d}{d \alpha}\left(\mathbf{1}+\alpha \nabla_{\mathbf{X}} \mathbf{h}\right)^{-T}\right)\left(\mathbf{1}+\alpha \nabla_{\mathbf{X}} \mathbf{h}\right)^{-1}\right|_{\alpha=0}-\left.\left(\mathbf{1}+\alpha \nabla_{\mathbf{X}} \mathbf{h}\right)^{-T} \frac{1}{2}\left(\frac{d}{d \alpha}(\mathbf{1}+\alpha \nabla \mathbf{X} \mathbf{h})^{-1}\right)\right|_{c} \tag{54}
\end{align*}
$$

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 4
Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

In order to compute this we must be able to evaluate,

$$
\begin{equation*}
\frac{d \mathbf{A}^{-1}(t)}{d t} \tag{55}
\end{equation*}
$$

given a tensor valued function $\mathbf{A}(t)$ depending on a scalar variable t. We have the following relation between the tensor and its inverse,

$$
\begin{equation*}
\mathbf{A}(t) \mathbf{A}^{-1}(t)=\mathbf{1} \tag{56}
\end{equation*}
$$

If we take a derivative of both sides with respect to t we obtain,

$$
\begin{align*}
\frac{\partial \mathbf{A}(t)}{\partial t} \mathbf{A}^{-1}(t)+\mathbf{A} \frac{\partial \mathbf{A}^{-1}(t)}{\partial t} & =\mathbf{0} \\
\frac{\partial \mathbf{A}(t)}{\partial t} \mathbf{A}^{-1}(t) & =-\mathbf{A}(t) \frac{\partial \mathbf{A}^{-1}(t)}{\partial t} \\
\frac{\partial \mathbf{A}(t)}{\partial t} \mathbf{A}^{-1}(t) & =-\mathbf{A}(t) \frac{\partial \mathbf{A}^{-1}(t)}{\partial t} \\
\frac{\partial \mathbf{A}^{-1}(t)}{\partial t} & =-\mathbf{A}^{-1}(t) \frac{\partial \mathbf{A}^{-1}(t)}{\partial t} \mathbf{A}^{-1}(t) \tag{57}
\end{align*}
$$

Applying this to our problem we obtain,

$$
\begin{align*}
\frac{d}{d \alpha}\left(\mathbf{1}+\alpha \nabla_{\mathbf{X}} \mathbf{h}\right)^{-1} & =-\left(\mathbf{1}+\alpha \nabla_{\mathbf{X}} \mathbf{h}\right)^{-1} \frac{d\left(\mathbf{1}+\alpha \nabla_{\mathbf{X}} \mathbf{h}\right)}{d \alpha}\left(\mathbf{1}+\alpha \nabla_{\mathbf{X}} \mathbf{h}\right)^{-1} \\
& =-\left(\mathbf{1}+\alpha \nabla_{\mathbf{X}} \mathbf{h}\right)^{-1} \nabla_{\mathbf{X}} \mathbf{h}\left(\mathbf{1}+\alpha \nabla_{\mathbf{X}} \mathbf{h}\right)^{-1} \tag{58}
\end{align*}
$$

and thus,

$$
\begin{align*}
\left.\frac{d}{d \alpha}\right|_{\alpha=0}\left(\mathbf{1}+\alpha \nabla_{\mathbf{x}} \mathbf{h}\right)^{-1} & =-\nabla_{\mathbf{x}} \mathbf{h} \tag{59}\\
\left.\frac{d}{d \alpha}\right|_{\alpha=0}\left(\mathbf{1}+\alpha \nabla_{\mathbf{x}} \mathbf{h}\right)^{-T} & =-\nabla_{\mathbf{x}} \mathbf{h}^{T} \tag{60}
\end{align*}
$$

Inserting this relationship into eqn. (54), we have,

$$
\begin{align*}
D \mathbf{e}(\mathbf{0})[\mathbf{h}] & =-\frac{1}{2}\left(-\nabla_{\mathbf{x}} \mathbf{h}\right)-\frac{1}{2}\left(-\nabla_{\mathbf{X}} \mathbf{h}\right)^{T} \\
& =\frac{1}{2}\left(\nabla_{\mathbf{x}} \mathbf{h}+\left(\nabla_{\mathbf{x}} \mathbf{h}\right)^{T}\right) . \tag{61}
\end{align*}
$$

This shows that near $\mathbf{0}$, the Almansi strain tensor depends linearly on the displacement \mathbf{h} in the same manner as the infinitesimal strain tensor.

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 4

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

2 Homework

2.1 Computing material and spatial quantities

The motion for simple shear of a unit square $(\Omega=[0,1] \times[0,1])$ is given as,

$$
\begin{align*}
& x_{1}=X_{1}+X_{2} \gamma(t) \tag{62}\\
& x_{2}=X_{2} \tag{63}
\end{align*}
$$

Sketch the given motion, then compute the material velocity $(\mathbf{V}(\mathbf{X}, t))$, material acceleration $(\mathbf{A}(\mathbf{X}, t))$, spatial velocity $(\mathbf{v}(\mathbf{x}, t))$, spatial acceleration $(\mathbf{a}(\mathbf{x}, t)$), and confirm the following relationship between the material time derivative of the spatial velocity and the spatial time derivative of the spatial velocity,

$$
\begin{equation*}
\left(\frac{\partial \mathbf{v}}{\partial t}\right)_{\mathbf{x}}=\left(\frac{\partial \mathbf{v}}{\partial t}\right)_{\mathbf{x}}+\left(\frac{\partial \mathbf{v}}{\partial \mathbf{x}}\right)_{t} \cdot \mathbf{v} \tag{64}
\end{equation*}
$$

2.2 Deformations

Given the motion,

$$
\begin{align*}
& x_{1}=\alpha \cos \theta X_{1}-\beta \sin \theta X_{2}+\gamma \tag{65}\\
& x_{2}=\alpha \sin \theta X_{1}+\beta \cos \theta X_{2}+\gamma \tag{66}
\end{align*}
$$

of a unit square $(\Omega=[0,1] \times[0,1])$ where α, β, γ are constants, compute the quantaties $\mathbf{F}, \mathbf{C}, \mathbf{b}, \mathbf{E}$ and \mathbf{e}. Then compute the right and left polar decompositions of \mathbf{F},

$$
\begin{align*}
\mathbf{F} & =\mathbf{R}_{U} \mathbf{U} \tag{67}\\
\mathbf{F} & =\mathbf{V R}_{V} \tag{68}
\end{align*}
$$

and confirm that $\mathbf{R}_{U}=\mathbf{R}_{V}$. Lastly compute the spectral decompositions of \mathbf{U} and \mathbf{V},

$$
\begin{align*}
\mathbf{U} & =\Sigma_{A=1}^{2} \lambda_{U A} \mathbf{N}_{A} \otimes \mathbf{N}_{A} \tag{69}\\
\mathbf{V} & =\Sigma_{A=1}^{2} \lambda_{V A} \mathbf{n}_{A} \otimes \mathbf{n}_{A} \tag{70}
\end{align*}
$$

and confirm that,

$$
\begin{align*}
\lambda_{U A} & =\lambda_{V A} \tag{72}\\
\mathbf{n}_{A} & =\mathbf{R N}_{A} \tag{73}
\end{align*}
$$

Describe the given motion along with a sketch.

