ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 3

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

1 Useful Definitions or Concepts

1.1 Taking derivatives of functions

So far we have treated scalars, vectors, and 2nd-order tensors. Functions which take any of these types as arguments and return any of these types can be defined and derivatives of these functions can be obtained respective of their arguments, i.e. if the argument is a vector we can take a derivative with respect to the vector. Below we introduce the different notations that are possible.

1.1.1 Differentiating in the symbolic notation

The chart below shows the different combinations that ara available. For example, if the function is scalar-valued f and takes a vector \mathbf{v} as an argument, we have,

$$
\begin{equation*}
\frac{\partial f(\mathbf{v})}{\partial \mathbf{v}} \tag{1}
\end{equation*}
$$

Table 1: Differentiating in symbolic notation

		Values		
		Scalar (f)	Vector (\mathbf{f})	Tensor (\mathbf{F})
Args	Scalar $t\left(\frac{d}{d t}\right)$	$\frac{d}{d t}\{f(t)\}$	$\left.\frac{d}{d t}\{\mathbf{f}(t))\right\}$	$\frac{d}{d t}\{\mathbf{F}(t)\}$
	Vector $\mathbf{v}\left(\frac{\partial}{\partial \mathbf{v}}\right)$	$\frac{\partial}{\partial \mathbf{v}}\{f(\mathbf{v})\}$	$\frac{\partial}{\partial \mathbf{v}}\{\mathbf{f}(\mathbf{v})\}$	$\frac{\partial}{\partial \mathbf{v}}\{\mathbf{F}(\mathbf{v})\}$
	Tensor $\mathbf{A}\left(\frac{\partial}{\partial \mathbf{A}}\right)$	$\frac{\partial\{f(\mathbf{A})\}}{\partial \mathbf{A}}$	$\frac{\partial\{\mathbf{f}(\mathbf{A})\}}{\partial \mathbf{A}}$	$\frac{\partial\{\mathbf{F}(\mathbf{A})\}}{\partial \mathbf{A}}$

1.1.2 Differentiating in index notation

When one would like to manipulate the components for calculation, the differentiation of the functions can be expressed in index notation. For example, if the function is scalar-valued f and takes a tensor \mathbf{A} as an argument, we have,

$$
\begin{equation*}
\frac{\partial f(\mathbf{A})}{\partial \mathbf{A}}=\frac{\partial f(\mathbf{A})}{\partial A_{k l}} \mathbf{e}_{k} \otimes \mathbf{e}_{l} \tag{2}
\end{equation*}
$$

One must take care in appending the basis vectors \mathbf{e}_{i} with indices related to differentiation to the end, NOT THE FRONT. (Though this is a convention and different books may define the differentiation operations differently).

Table 2: Differentiating in index notation

		Values		
	Args	Scalar (f)	Vector $\left(\mathbf{f}=f_{i} \mathbf{e}_{i}\right)$	Tensor $\left(\mathbf{F}=F_{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}\right)$
		Vector $\mathbf{v}\left(\frac{\partial}{\partial v_{k}} \mathbf{e}_{k}\right)$	$\frac{d}{d t}\{f(t)\}$	$\frac{d}{d t}\left\{f_{i}(t) \mathbf{e}_{i}\right\}$
		$\frac{\partial}{\partial v_{k}}\left\{f_{i}(\mathbf{v}) \mathbf{e}_{i}\right\} \otimes \mathbf{e}_{k}$	$\frac{\partial}{\partial v_{k}}\left\{F_{i j}(\mathbf{v}) \mathbf{e}_{i} \otimes \mathbf{e}_{j}\right\} \otimes \mathbf{e}_{k}$	
	Tensor $\mathbf{A}\left(\frac{\partial}{\partial A_{k l}} \mathbf{e}_{k} \otimes \mathbf{e}_{l}\right)$	$\frac{\partial\{f(\mathbf{A})\}}{\partial A_{k l}} \mathbf{e}_{k} \otimes \mathbf{e}_{l}$	$\frac{\partial\left\{\mathbf{e}_{i}(\mathbf{A}) \mathbf{e}_{i}\right\}}{\partial A_{k l}} \otimes \mathbf{e}_{k} \otimes \mathbf{e}_{l}$	$\frac{\partial\left\{F_{i j}(\mathbf{A}) \mathbf{e}_{i} \otimes \mathbf{e}_{j}\right\}}{\partial A_{k l}} \otimes \mathbf{e}_{k} \otimes \mathbf{e}_{l}$

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 3

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

1.1.3 Differentiating in simplified index notation

When one would like to manipulate the components for calculation, the differentiation of the functions can be expressed in index notation. Additionally when it is clear what basis are being used consistently for all objects, we abreivate the basis for simpler notation. For example, if the function is vector-valued \mathbf{f} and takes a vector \mathbf{v} as an argument, we have,

$$
\begin{align*}
\frac{\partial f(\mathbf{f})}{\partial \mathbf{v}}= & \frac{\partial f_{i}(\mathbf{v}) \mathbf{e}_{i}}{\partial v_{k}} \otimes \mathbf{e}_{k} \\
= & \frac{\partial f_{i}(\mathbf{v})}{\partial v_{k}} \mathbf{e}_{i} \otimes \mathbf{e}_{k} \\
& \text { In simplified index notation } \frac{\partial f_{i}(\mathbf{v})}{\partial v_{k}} \tag{3}
\end{align*}
$$

One must take care in appending the basis vectors \mathbf{e}_{i} with indices related to differentiation to the end, NOT THE FRONT. (Though this is a convention and different books may define the differentiation operations differently).

Table 3: Differentiating in simplified index notation

		Values		
	Scalar (f)	Vector $\left(\mathbf{f}=f_{i}\right)$	Tensor $\left(\mathbf{F}=F_{i j}\right)$	
Args	Scalar $t\left(\frac{d}{d t}\right)$	$\frac{d}{d t}\{f(t)\}$	$\frac{d}{d t}\left\{f_{i}(t)\right\}$	$\frac{d}{d t}\left\{F_{i j}(t)\right\}$
	Vector $\mathbf{v}\left(\frac{\partial}{\partial v_{k}}\right)$	$\frac{\partial}{\partial v_{k}}\{f(\mathbf{v})\}$	$\frac{\partial}{\partial v_{k}}\left\{f_{i}(\mathbf{v})\right\}$	$\frac{\partial}{\partial v_{k}}\left\{F_{i j}(\mathbf{v})\right\}$
	Tensor $\mathbf{A}\left(\frac{\partial}{\partial A_{k l}}\right)$	$\frac{\partial\{f(\mathbf{A})\}}{\partial A_{k l}}$	$\frac{\partial\left\{f_{i}(\mathbf{A})\right\}}{\partial A_{k l}}$	$\frac{\partial\left\{F_{i j}(\mathbf{A})\right\}}{\partial A_{k l}}$

In the special case when the argument is dependent on the coordinates \mathbf{x}, then we have an even simpler notation. notation. For example, if the function is vector-valued \mathbf{f} and takes the coordinates \mathbf{x} as an argument, we have,

$$
\begin{aligned}
\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} & =\frac{\partial f_{i}(\mathbf{x}) \mathbf{e}_{i}}{\partial x_{k}} \otimes \mathbf{e}_{k} \\
& =\frac{\partial f_{i}(\mathbf{x})}{\partial x_{k}} \mathbf{e}_{i} \otimes \mathbf{e}_{k}
\end{aligned}
$$

$$
\text { In simplified index notation } \frac{\partial f_{i}(\mathbf{x})}{\partial x_{k}}
$$

$$
\begin{equation*}
\text { In simplified index notation } f_{i, k}(\mathbf{x}) \tag{4}
\end{equation*}
$$

One must take care in appending the basis vectors \mathbf{e}_{i} with indices related to differentiation to the end, NOT THE FRONT. (Though this is a convention and different books may define the differentiation operations differently).

Table 4: Differentiating in simplified index notation(coordinate arguments)

		Values		
		Scalar (f)	Vector $\left(\mathbf{f}=f_{i}\right)$	Tensor $\left(\mathbf{F}=F_{i j}\right)$
Args	Vector $\mathbf{x}\left(\frac{\partial}{\partial x_{k}}\right)$	$f_{k}(\mathbf{x})$	$f_{i, k}(\mathbf{x})$	$F_{i j, k}(\mathbf{x})$

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 3

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

1.2 The directional derivative

The directional derivative of a function f with argument v in direction h is defined as,

$$
\begin{align*}
D f(v)[h] & =\left.\frac{d}{d \alpha}\right|_{\alpha=0} f(v+\alpha h) \tag{5}\\
& =\lim _{\alpha \rightarrow 0} \frac{f(v+\alpha h)-f(v)}{\alpha} \tag{6}
\end{align*}
$$

The expressions on the right hand side are equivalent from the definition of the derivative. This directional derivative is useful in computing the derivative of a function f (scalar, vector, tensor valued), since we have the following relations between the two.

$$
\begin{align*}
D f(t)[h] & =\frac{d f(t)}{d t} h \tag{7}\\
D f(\mathbf{v})[\mathbf{h}] & =\frac{d f(\mathbf{v})}{d \mathbf{v}} \cdot \mathbf{h} \tag{8}\\
D f(\mathbf{A})[\mathbf{H}] & =\frac{d f(\mathbf{A})}{d \mathbf{A}}: \mathbf{H} \tag{9}
\end{align*}
$$

1.3 Computing derivatives

To compute the derivative of a function one has two approaches.

1. Compute the directional derivative and extract the derivative.
2. Compute the derivative directly through simplified index calculation.

Depending on the problem one approach may be quicker and easier than the other. To compute the derivative of the trace function we have the following two approaches.

1. Compute $D \operatorname{tr}(\mathbf{A})[\mathbf{H}]$.
2. Compute $\frac{\partial \operatorname{tr}(\mathbf{A})}{\partial \mathbf{A}}=\frac{\partial A_{i i}}{\partial A_{k l}}$.

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 3
Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

1.4 Important operators

1.4.1 The gradient operator

Using the operator,

$$
\begin{equation*}
\nabla=\frac{\partial}{\partial \mathbf{x}}=\frac{\partial}{\partial x_{k}} \mathbf{e}_{k} \tag{10}
\end{equation*}
$$

one can define the gradient operation on scalar, vector, and tensor fields.

$$
\begin{align*}
\operatorname{grad} f(\mathbf{x})= & \nabla f(\mathbf{x}) \\
= & \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \\
= & \frac{\partial f(\mathbf{x})}{\partial x_{k}} \mathbf{e}_{k} \\
& \text { In simplified index notation } \frac{\partial f(\mathbf{x})}{\partial x_{k}}=f_{, k} \\
\operatorname{gradv}(\mathbf{x})= & \nabla \otimes \mathbf{v}(\mathbf{x}) \\
= & \frac{\partial \mathbf{v}(\mathbf{x})}{\partial \mathbf{x}} \\
= & \frac{\partial v_{i}(\mathbf{x}) \mathbf{e}_{i}}{\partial x_{k}} \otimes \mathbf{e}_{k}=\frac{\partial v_{i}(\mathbf{x})}{\partial x_{k}} \mathbf{e}_{i} \otimes \mathbf{e}_{k} \\
& \operatorname{In} \operatorname{simplified} \text { index notation } \frac{\partial v_{i}(\mathbf{x})}{\partial x_{k}}=v_{i, k} \\
= & \nabla \otimes \mathbf{A}(\mathbf{x}) \\
\operatorname{grad} \mathbf{A}(\mathbf{x}) & \frac{\partial \mathbf{A}(\mathbf{x})}{\partial \mathbf{x}} \\
= & \frac{\partial A_{i j}(\mathbf{x}) \mathbf{e}_{i} \otimes \mathbf{e}_{j}}{\partial x_{k}} \otimes \mathbf{e}_{k}=\frac{\partial A_{i j}(\mathbf{x})}{\partial x_{k}} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{k} \\
& \operatorname{In} \operatorname{simplified} \text { index notation } \frac{\partial A_{i j}(\mathbf{x})}{\partial x_{k}}=A_{i j, k} \tag{11}
\end{align*}
$$

1.4.2 The divergence operator

Using the operator,

$$
\begin{equation*}
\nabla=\frac{\partial}{\partial \mathbf{x}}=\frac{\partial}{\partial x_{k}} \mathbf{e}_{k} \tag{12}
\end{equation*}
$$

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 3
Prof. Dr. Sanjay Govindjee
one can define the divergence operation on vector and tensor fields.

$$
\begin{aligned}
\operatorname{divv}(\mathbf{x}) & =\nabla \cdot \mathbf{v}(\mathbf{x}) \\
& =\frac{\partial v_{i}(\mathbf{x}) \mathbf{e}_{i}}{\partial x_{k}} \cdot \mathbf{e}_{k}=\frac{\partial v_{i}(\mathbf{x})}{\partial x_{k}} \delta_{i k} \\
& =\frac{\partial v_{i}(\mathbf{x})}{\partial x_{i}} \\
& =v_{i, i} \\
\operatorname{div} \mathbf{A}(\mathbf{x}) & =\nabla \cdot \mathbf{A}(\mathbf{x}) \\
& =\frac{\partial A_{i j}(\mathbf{x}) \mathbf{e}_{i} \otimes \mathbf{e}_{j}}{\partial x_{k}} \cdot \mathbf{e}_{k}=\frac{\partial A_{i j}(\mathbf{x})}{\partial x_{k}} \delta_{j k} \mathbf{e}_{i} \\
& =\frac{\partial A_{i j}(\mathbf{x})}{\partial x_{j}} \mathbf{e}_{i}
\end{aligned}
$$

$$
\text { In simplified index notation } \frac{\partial A_{i j}(\mathbf{x})}{\partial x_{j}}=A_{i j, j}
$$

1.4.3 The curl operator

Using the operator,

$$
\begin{equation*}
\nabla=\frac{\partial}{\partial \mathbf{x}}=\frac{\partial}{\partial x_{k}} \mathbf{e}_{k} \tag{13}
\end{equation*}
$$

one can define the curl operation on a vector field,

$$
\begin{aligned}
\operatorname{curlv}(\mathbf{x}) & =\nabla \times \mathbf{v}(\mathbf{x}) \\
& =\mathbf{e}_{k} \times \frac{\partial v_{i}(\mathbf{x}) \mathbf{e}_{i}}{\partial x_{k}} \\
& =\frac{\partial v_{i}(\mathbf{x})}{\partial x_{k}} \mathbf{e}_{k} \otimes \mathbf{e}_{i} \\
& =\frac{\partial v_{i}(\mathbf{x})}{\partial x_{k}} \varepsilon_{k i j} \mathbf{e}_{j}
\end{aligned}
$$

$$
\text { In simplified index notation } \frac{\partial v_{i}(\mathbf{x})}{\partial x_{k}} \varepsilon_{k i j}=v_{i, k} \varepsilon_{k i j}
$$

1.5 Integral theorem

Given any field,

- A scalar T
- A vector T_{i}
- A 2nd-order tensor $T_{i j}$
- A kth-order tensor $T_{i j \ldots}$
we can apply the following integral theorem which converts volume integration to surface integration.

$$
\begin{equation*}
\int_{\Omega} T_{i j \cdots p, q} d V=\int_{\partial \Omega} T_{i j \cdots p} n_{q} d A \tag{14}
\end{equation*}
$$

Here n_{q} is the normal vector to the surface $\partial \Omega$.

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 3

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

2 Application of concepts or definitions

Problem:

Show that the relationship,

$$
\begin{equation*}
D f(t)[h]=\frac{d f(t)}{d t} h \tag{15}
\end{equation*}
$$

is valid for a scalar valued scalar argument function.

Solution:

From the Taylor expansion of $f(t+\alpha h)$ at t we have,

$$
f(t+\alpha h)=f(t)+\frac{d f}{d t}(t) \alpha h+O\left(\alpha^{2}\right)
$$

Manipulating this we obtain,

$$
\frac{f(t+\alpha h)-f(t)}{\alpha}=\frac{d f}{d t}(t) h+O(\alpha)
$$

From the definition of the directional derivative we have,

$$
\begin{aligned}
D f(t)[h] & =\lim _{\alpha \rightarrow 0} \frac{f(t+\alpha h)-f(t)}{\alpha} \\
& =\lim _{\alpha \rightarrow 0} \frac{d f}{d t}(t) h+O(\alpha) \\
& =\frac{d f}{d t}(t) h
\end{aligned}
$$

Problem:

Show that the relationship,

$$
\begin{equation*}
D f(\mathbf{v})[\mathbf{h}]=\frac{\partial f(\mathbf{v})}{\partial \mathbf{v}} \cdot \mathbf{h} \tag{17}
\end{equation*}
$$

is valid for a scalar valued vector argument function.

Solution:

From the Taylor expansion of $f(t+\alpha h)$ at t we have,

$$
\begin{aligned}
f(\mathbf{v}+\alpha \mathbf{h}) & =f\left(v_{1}+\alpha h_{1}, \ldots, v_{n}+\alpha h_{n}\right) \\
& =f\left(v_{1}, \ldots, v_{n}\right)+\frac{\partial f}{\partial v_{1}}(\mathbf{v}) \alpha h_{1}+\cdots+\frac{\partial f}{\partial v_{n}}(\mathbf{v}) \alpha h_{n}+O\left(\alpha^{2}\right) . \\
& =f(\mathbf{v})+\frac{\partial f}{\partial v_{i}}(\mathbf{v}) \alpha h_{i}+O\left(\alpha^{2}\right) . \\
& =f(\mathbf{v})+\alpha \frac{\partial f}{\partial \mathbf{v}}(\mathbf{v}) \cdot \mathbf{h}+O\left(\alpha^{2}\right) .
\end{aligned}
$$

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 3
Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

Manipulating this we obtain,

$$
\frac{f(\mathbf{v}+\alpha \mathbf{h}-f(\mathbf{v})}{\alpha}=\frac{\partial f}{\partial \mathbf{v}}(\mathbf{v}) \cdot \mathbf{h}+O(\alpha) .
$$

From the definition of the directional derivative we have,

$$
\begin{aligned}
D f(\mathbf{v})[\mathbf{h}] & =\lim _{\alpha \rightarrow 0} \frac{f(\mathbf{v}+\alpha \mathbf{h})-f(\mathbf{v})}{\alpha} \\
& =\lim _{\alpha \rightarrow 0} \frac{\partial f}{\partial \mathbf{v}}(\mathbf{v}) \cdot \mathbf{h}+O(\alpha) \\
& =\frac{\partial f}{\partial \mathbf{v}}(\mathbf{v}) \mathbf{h}
\end{aligned}
$$

Problem:

Show that the relationship,

$$
\begin{equation*}
D f(\mathbf{A})[\mathbf{H}]=\frac{\partial f(\mathbf{A})}{\partial \mathbf{A}}: \mathbf{H} \tag{19}
\end{equation*}
$$

is valid for a scalar valued tensor argument function.

Solution:

From the Taylor expansion of $f(t+\alpha h)$ at t we have,

$$
\begin{aligned}
f(\mathbf{A}+\alpha \mathbf{H}) & =f\left(A_{11}+\alpha H_{11}, \ldots, A_{n n}+\alpha H_{n n}\right) \\
& =f\left(A_{11}, \ldots, H_{n n}\right)+\frac{\partial f}{\partial A_{11}}(\mathbf{A}) \alpha H_{11}+\cdots+\frac{\partial f}{\partial A_{n n}}(\mathbf{A}) \alpha H_{n n}+O\left(\alpha^{2}\right) . \\
& =f(\mathbf{A})+\frac{\partial f}{\partial A_{i j}}(\mathbf{v}) \alpha H_{i j}+O\left(\alpha^{2}\right) . \\
& =f(\mathbf{v})+\alpha \frac{\partial f}{\partial \mathbf{A}}(\mathbf{A}): \mathbf{H}+O\left(\alpha^{2}\right) .
\end{aligned}
$$

Manipulating this we obtain,

$$
\frac{f(\mathbf{A}+\alpha \mathbf{H}-f(\mathbf{A})}{\alpha}=\frac{\partial f}{\partial \mathbf{A}}(\mathbf{A}): \mathbf{H}+O(\alpha) .
$$

From the definition of the directional derivative we have,

$$
\begin{aligned}
D f(\mathbf{A})[\mathbf{H}] & =\lim _{\alpha \rightarrow 0} \frac{f(\mathbf{A}+\alpha \mathbf{H})-f(\mathbf{A})}{\alpha} \\
& =\lim _{\alpha \rightarrow 0} \frac{\partial f}{\partial \mathbf{A}}(\mathbf{A}): \mathbf{H}+O(\alpha) \\
& =\frac{\partial f}{\partial \mathbf{A}}(\mathbf{A}): \mathbf{H} .
\end{aligned}
$$

Problem:

Find the derivative of the scalar valued tensor argument function,

$$
\begin{equation*}
\operatorname{tr}(\mathbf{A}) \tag{20}
\end{equation*}
$$

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 3

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

Solution:

Taking the directional derivative,

$$
\begin{align*}
\frac{\partial \operatorname{tr}(\mathbf{A})}{\partial \mathbf{A}}: \mathbf{H} & =\left.\frac{d}{d \alpha}\right|_{\alpha=0} \operatorname{tr}(\mathbf{A}+\alpha \mathbf{H}) \\
& =\left.\frac{d f}{d \alpha}\right|_{\alpha=0} \operatorname{tr}(\mathbf{A})+\alpha \operatorname{tr}(\mathbf{H}) \tag{21}\\
& =\operatorname{tr}(\mathbf{H}) \\
& =\mathbf{1}: \mathbf{H} \tag{22}
\end{align*}
$$

Thus we have that,

$$
\begin{equation*}
\frac{\partial \operatorname{tr}(\mathbf{A})}{\partial \mathbf{A}}=\mathbf{1} \tag{23}
\end{equation*}
$$

Alternatively, we can compute this derivative through the simplified index notation.

$$
\begin{align*}
{\left[\frac{\partial \operatorname{tr}(\mathbf{A})}{\partial \mathbf{A}}\right]_{k l} } & =\frac{\partial \operatorname{tr}(\mathbf{A})}{\partial A_{k l}} \\
& =\frac{\partial A_{i i}}{\partial A_{k l}} \\
& =\delta_{i k} \delta_{i l} \\
& =\delta_{k l} \tag{24}
\end{align*}
$$

Thus we again have the relation in equation (23).

Problem:

Find the derivative of the scalar valued vector argument function,

$$
\begin{equation*}
\|\mathbf{v}\| \tag{25}
\end{equation*}
$$

Solution:

Taking the directional derivative,

$$
\begin{align*}
\frac{\partial\|\mathbf{v}\|}{\partial \mathbf{v}} \cdot \mathbf{h} & =\left.\frac{d}{d \alpha}\right|_{\alpha=0} \sqrt{(\mathbf{v}+\alpha \mathbf{h}) \cdot(\mathbf{v}+\alpha \mathbf{h})} \\
& =\left.\frac{\mathbf{h} \cdot(\mathbf{v}+\alpha \mathbf{h})+(\mathbf{v}+\alpha \mathbf{h}) \cdot \mathbf{h}}{2 \sqrt{(\mathbf{v}+\alpha \mathbf{h}) \cdot(\mathbf{v}+\alpha \mathbf{h})}}\right|_{\alpha=0} \\
& =\frac{\mathbf{v} \cdot \mathbf{h}}{\|\mathbf{v}\|} \\
& =\frac{\mathbf{v}}{\|\mathbf{v}\|} \cdot \mathbf{h} \tag{26}
\end{align*}
$$

Thus we have that,

$$
\begin{equation*}
\frac{\partial\|\mathbf{v}\|}{\partial \mathbf{v}}=\frac{\mathbf{v}}{\|\mathbf{v}\|} \tag{27}
\end{equation*}
$$

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 3

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

Alternatively, we can compute this derivative through the simplified index notation.

$$
\begin{align*}
{\left[\frac{\partial\|\mathbf{v}\|}{\partial \mathbf{v}}\right]_{k} } & =\frac{\partial \sqrt{v_{i} v_{i}}}{\partial v_{k}} \\
& =\frac{1}{2 \sqrt{v_{j} v_{j}}} \frac{\partial v_{i} v_{i}}{\partial v_{k}} \\
& =\frac{1}{2\|\mathbf{v}\|}\left(\delta_{i k} v_{i}+v_{i} \delta_{i k}\right) \\
& =\frac{1}{2\|\mathbf{v}\|}\left(2 v_{k}\right) \\
& =\frac{v_{k}}{\|\mathbf{v}\|} \tag{28}
\end{align*}
$$

Thus we again have the relation in equation (27).

Problem:

Find the derivative of the scalar valued vector argument function,

$$
\begin{equation*}
f(\mathbf{v})=\mathbf{a} \cdot \mathbf{v} \tag{29}
\end{equation*}
$$

where \mathbf{a} is a constant vector.

Solution:

Taking the directional derivative,

$$
\begin{align*}
\frac{\partial \mathbf{a} \cdot \mathbf{v}}{\partial \mathbf{v}} \cdot \mathbf{h} & \\
& =\left.\frac{d}{d \alpha}\right|_{\alpha=0} \mathbf{a} \cdot(\mathbf{v}+\alpha \mathbf{h}) \\
& =\left.\mathbf{a} \cdot \mathbf{h}\right|_{\alpha=0} \\
& =\mathbf{a} \cdot \mathbf{h} \tag{30}
\end{align*}
$$

Thus we have that,

$$
\begin{equation*}
\frac{\partial \mathbf{a} \cdot \mathbf{v}}{\partial \mathbf{v}}=\mathbf{a} \tag{31}
\end{equation*}
$$

Alternatively, we can compute this derivative through the simplified index notation.

$$
\begin{align*}
{\left[\frac{\partial \mathbf{a} \cdot \mathbf{v}}{\partial \mathbf{v}}\right]_{k} } & =\frac{\partial a_{i} v_{i}}{\partial v_{k}} \\
& =a_{i} \delta_{i k} \\
& =a_{k} \tag{32}
\end{align*}
$$

Thus we again have the relation in equation (31).
Problem:

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 3
Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

Find the derivative of the scalar valued vector argument function,

$$
\begin{equation*}
f(\mathbf{v})=\mathbf{v} \cdot \mathbf{v} \tag{33}
\end{equation*}
$$

Solution:

Taking the directional derivative,

$$
\begin{align*}
\frac{\partial \mathbf{v} \cdot \mathbf{v}}{\partial \mathbf{v}} \cdot \mathbf{h} & \\
& =\left.\frac{d}{d \alpha}\right|_{\alpha=0}(\mathbf{v}+\alpha \mathbf{h}) \cdot(\mathbf{v}+\alpha \mathbf{h}) \\
& =\mathbf{h} \cdot(\mathbf{v}+\alpha \mathbf{h})+\left.(\mathbf{v}+\alpha \mathbf{h}) \cdot \mathbf{h}\right|_{\alpha=0} \\
& =2 \mathbf{v} \cdot \mathbf{h} \tag{34}
\end{align*}
$$

Thus we have that,

$$
\begin{equation*}
\frac{\partial \mathbf{v} \cdot \mathbf{v}}{\partial \mathbf{v}}=\mathbf{a} \tag{35}
\end{equation*}
$$

Alternatively, we can compute this derivative through the simplified index notation.

$$
\begin{align*}
{\left[\frac{\partial \mathbf{v} \cdot \mathbf{v}}{\partial \mathbf{v}}\right]_{k} } & =\frac{\partial v_{i} v_{i}}{\partial v_{k}} \\
& =\delta_{i k} v_{i}+v_{i} \delta_{i k} \\
& =2 v_{k} \tag{36}
\end{align*}
$$

Thus we again have the relation in equation (35).

Problem:

Find the derivative of the vector valued vector argument function,

$$
\begin{equation*}
f(\mathbf{v})=\mathbf{v} \tag{37}
\end{equation*}
$$

Solution:

Taking the directional derivative,

$$
\begin{align*}
& \frac{\partial \mathbf{v}}{\partial \mathbf{v}} \cdot \mathbf{h} \\
&=\left.\frac{d}{d \alpha}\right|_{\alpha=0}(\mathbf{v}+\alpha \mathbf{h}) \\
&=\left.(\mathbf{v}+\alpha \mathbf{h})\right|_{\alpha=0} \\
&=\mathbf{h} \\
&=\mathbf{1} \mathbf{h} \tag{38}
\end{align*}
$$

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 3

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

Thus we have that,

$$
\begin{equation*}
\frac{\partial \mathbf{v}}{\partial \mathbf{v}}=\mathbf{1} \tag{39}
\end{equation*}
$$

Alternatively, we can compute this derivative through the simplified index notation.

$$
\begin{align*}
{\left[\frac{\partial \mathbf{v}}{\partial \mathbf{v}}\right]_{i k} } & =\frac{\partial v_{i}}{\partial v_{k}} \\
& =\delta_{i k} \tag{40}
\end{align*}
$$

Thus we again have the relation in equation (39).

Problem:

Find the derivative of the vector valued vector argument function,

$$
\begin{equation*}
f(\mathbf{v})=\mathbf{A} \mathbf{v} \tag{41}
\end{equation*}
$$

where \mathbf{A} is a constant tensor.

Solution:

Taking the directional derivative,

$$
\begin{align*}
\frac{\partial \mathbf{A} \mathbf{v}}{\partial \mathbf{v}} \cdot \mathbf{h} & \\
& =\left.\frac{d}{d \alpha}\right|_{\alpha=0} \mathbf{A}(\mathbf{v}+\alpha \mathbf{h}) \\
& =\left.\mathbf{A h}\right|_{\alpha=0} \\
& =\mathbf{A} \mathbf{h} \tag{42}
\end{align*}
$$

Thus we have that,

$$
\begin{equation*}
\frac{\partial \mathbf{A} \mathbf{v}}{\partial \mathbf{v}}=\mathbf{A} \tag{43}
\end{equation*}
$$

Alternatively, we can compute this derivative through the simplified index notation.

$$
\begin{align*}
{\left[\frac{\partial \mathbf{A} \mathbf{v}}{\partial \mathbf{v}}\right]_{i k} } & =\frac{\partial A_{i j} v_{j}}{\partial v_{k}} \\
& =A_{i j} \delta_{j k} \\
& =A_{i k} \tag{44}
\end{align*}
$$

Thus we again have the relation in equation (43).

Problem:

Find the derivative of the scalar valued tensor argument function,

$$
\begin{equation*}
f(\mathbf{A})=\mathbf{A}: \mathbf{B} \tag{45}
\end{equation*}
$$

where \mathbf{B} is a constant tensor.

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 3

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

Solution:

Taking the directional derivative,

$$
\begin{align*}
\frac{\partial \mathbf{A}: \mathbf{B}}{\partial \mathbf{A}}: \mathbf{H} & =\left.\frac{d}{d \alpha}\right|_{\alpha=0}(\mathbf{A}+\alpha \mathbf{H}): \mathbf{B} \\
& =\mathbf{H}:\left.\mathbf{B}\right|_{\alpha=0} \\
& =\mathbf{B}: \mathbf{H} \tag{46}
\end{align*}
$$

Thus we have that,

$$
\begin{equation*}
\frac{\partial \mathbf{A}: \mathbf{B}}{\partial \mathbf{A}}=\mathbf{B} \tag{47}
\end{equation*}
$$

Alternatively, we can compute this derivative through the simplified index notation.

$$
\begin{align*}
{\left[\frac{\partial \mathbf{A}: \mathbf{B}}{\partial \mathbf{A}}\right]_{k l} } & =\frac{\partial A_{i j} B_{i j}}{\partial A_{k l}} \\
& =B_{i j} \delta_{i k} \delta_{j l} \\
& =A_{k l} \tag{48}
\end{align*}
$$

Thus we again have the relation in equation (47).

Problem:

Find the derivative of the scalar valued tensor argument function,

$$
\begin{equation*}
f(\mathbf{A})=\mathbf{A}: \mathbf{A} \tag{49}
\end{equation*}
$$

Solution:

Taking the directional derivative,

$$
\begin{align*}
\frac{\partial \mathbf{A}: \mathbf{A}}{\partial \mathbf{A}}: \mathbf{H} & =\left.\frac{d}{d \alpha}\right|_{\alpha=0}(\mathbf{A}+\alpha \mathbf{H}):(\mathbf{A}+\alpha \mathbf{H}) \\
& =\mathbf{H}:(\mathbf{A}+\alpha \mathbf{H})+(\mathbf{A}+\alpha \mathbf{H}):\left.\mathbf{H}\right|_{\alpha=0} \\
& =2 \mathbf{A}: \mathbf{H} \tag{50}
\end{align*}
$$

Thus we have that,

$$
\begin{equation*}
\frac{\partial \mathbf{A}: \mathbf{A}}{\partial \mathbf{A}}=2 \mathbf{A} \tag{51}
\end{equation*}
$$

Alternatively, we can compute this derivative through the simplified index notation.

$$
\begin{align*}
{\left[\frac{\partial \mathbf{A}: \mathbf{A}}{\partial \mathbf{A}}\right]_{k l} } & =\frac{\partial A_{i j} A_{i j}}{\partial A_{k l}} \\
& =\delta_{i k} \delta_{j l} A_{i j}+A_{i j} \delta_{i k} \delta_{j l} \\
& =2 A_{k l} \tag{52}
\end{align*}
$$

Thus we again have the relation in equation (51).

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 3
Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

Problem:

Show that the following relationship holds.

$$
\begin{equation*}
\int_{\partial \Omega} \Psi \mathbf{u} \cdot \mathbf{n} d A=\int_{\Omega} \operatorname{div}(\Psi \mathbf{u}) d V \tag{53}
\end{equation*}
$$

Solution:

$$
\begin{align*}
\int_{\partial \Omega} \Psi \mathbf{u} \cdot \mathbf{n} d A & =\int_{\partial \Omega} \Psi u_{i} n_{i} d A \\
& =\int_{\Omega}\left(\Psi u_{i}\right)_{, i} d V \\
& =\int_{\Omega} \operatorname{div}(\Psi \mathbf{u}) d V \tag{54}
\end{align*}
$$

Problem:

Show that the following relationship holds.

$$
\begin{equation*}
\int_{\partial \Omega} \Psi \mathbf{A n} d A=\int_{\Omega} \operatorname{div}(\Psi \mathbf{A}) d V \tag{55}
\end{equation*}
$$

Solution:

$$
\begin{align*}
{\left[\int_{\partial \Omega} \Psi \mathbf{A n} d A\right]_{i} } & =\int_{\partial \Omega} \Psi A_{i j} n_{j} d A \\
& =\int_{\Omega}\left(\Psi A_{i j}\right)_{, j} d V \\
& =\left[\int_{\Omega} \operatorname{div}(\Psi \mathbf{A}) d V\right]_{i} \tag{56}
\end{align*}
$$

Problem:

Show that the following relationship holds.

$$
\begin{equation*}
\int_{\partial \Omega} \mathbf{u} \cdot \mathbf{A n} d A=\int_{\Omega} \operatorname{div}\left(\mathbf{A}^{T} \mathbf{u}\right) d V \tag{57}
\end{equation*}
$$

Solution:

$$
\begin{align*}
\int_{\partial \Omega} \mathbf{u} \cdot \mathbf{A n} d A & =\int_{\partial \Omega} u_{i} A_{i j} n_{j} d A \\
& =\int_{\Omega}\left(u_{i} A_{i j}\right)_{, j} d V \\
& =\int_{\Omega}\left((\mathbf{A})_{j i}^{T} u_{i}\right)_{, j} d V \\
& =\int_{\Omega}\left(\mathbf{A}^{T} \mathbf{u}\right)_{j, j} d V \\
& =\int_{\Omega} \operatorname{div}\left(\mathbf{A}^{T} \mathbf{u}\right) d V \tag{58}
\end{align*}
$$

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 3
Prof. Dr. Sanjay Govindjee

Problem:

Show that the following relationship holds.

$$
\begin{equation*}
\operatorname{div}(\Psi \mathbf{u})=\Psi \operatorname{div}(\mathbf{u})+\mathbf{u} \cdot \operatorname{grad} \Psi \tag{59}
\end{equation*}
$$

Solution:

$$
\begin{align*}
\operatorname{div}(\Psi \mathbf{u}) & =\left(\Psi u_{i} \mathbf{e}_{i}\right)_{, j} \otimes \mathbf{e}_{j} \\
& =\left(\Psi u_{i}\right)_{, i} \\
& =\Psi \Psi_{, i} u_{i}+\Psi u_{i, i} \\
& =\operatorname{grad} \Psi \cdot \mathbf{u}+\Psi \operatorname{divu} \tag{60}
\end{align*}
$$

Problem:

Show that the following relationship holds.

$$
\begin{equation*}
\operatorname{div}(\Psi \mathbf{A})=\Psi \operatorname{div}(\mathbf{A})+\mathbf{A} \operatorname{grad} \Psi \tag{61}
\end{equation*}
$$

Solution:

$$
\begin{align*}
{[\operatorname{div}(\Psi \mathbf{A})]_{i} } & =[\operatorname{div}(\Psi \mathbf{A})] \cdot \mathbf{e}_{i} \\
& =\left[\left(\Psi A_{k l} \mathbf{e}_{k} \otimes \mathbf{e}_{l}\right)_{, j} \cdot \mathbf{e}_{j}\right] \cdot \mathbf{e}_{i} \\
& =\left[\left(\Psi A_{k l}\right)_{, j} \delta_{l j} \mathbf{e}_{k}\right] \cdot \mathbf{e}_{i} \\
& =\left(\Psi A_{k l}\right)_{, j} \delta_{l j} \delta_{k i} \\
& =\left(\Psi A_{i j}\right)_{, j} \\
& =\Psi A_{, j}+\Psi A_{i j, j} \\
& =[\mathbf{A g r a d} \Psi]_{i}+[\Psi \operatorname{div} \mathbf{A}]_{i} \tag{62}
\end{align*}
$$

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 3

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

3 Homework

3.1 The skew tensor and its axial vector

Given a 2 nd-order skew tensor \mathbf{W}, show that there exists a vector $\boldsymbol{\omega} \in \mathbb{R}^{3}$ such that,

$$
\begin{equation*}
\mathbf{W} \mathbf{v}=\boldsymbol{\omega} \times \mathbf{v} \quad \forall \mathbf{v} \in \mathbb{R}^{3} \tag{63}
\end{equation*}
$$

This vector $\boldsymbol{\omega}$ is called the axial vector of \mathbf{W}. Express the components of $\boldsymbol{\omega}$ in terms of the components of \mathbf{W}. (Hint: Think of how many independent components the skew tensor has. Does this match the number of components of a vector in \mathbb{R}^{3} ?)

Solution:

In components, a skew symmetric tensor \mathbf{W} can be written as the matrix,

$$
\mathbf{W}=\left[\begin{array}{ccc}
0 & \alpha & \beta \tag{64}\\
-\alpha & 0 & \gamma \\
\beta & -\gamma & 0
\end{array}\right] .
$$

It is clear that this has only three independent degrees of freedom, which matches that of a vector in \mathbb{R}^{3}. Given an arbitrary vector,

$$
\begin{equation*}
\mathbf{v}=\left[v_{1}, v_{2}, v_{3}\right]^{T} \tag{65}
\end{equation*}
$$

we have,

$$
\begin{align*}
\mathbf{W} \mathbf{v} & =\left[\begin{array}{c}
\alpha v_{2}+\beta v_{3} \\
-\alpha v_{1}+\gamma v_{3} \\
-\beta v_{1}-\gamma v_{2}
\end{array}\right] \tag{66}\\
\boldsymbol{\omega} \times \mathbf{v} & =\left[\begin{array}{l}
\omega_{2} v_{3}-\omega_{3} v_{2} \\
\omega_{3} v_{1}-\omega_{1} v_{3} \\
\omega_{1} v_{2}-\omega_{2} v_{1}
\end{array}\right] . \tag{67}
\end{align*}
$$

Since these expressions must be equal for any $v_{i}(i=1,2,3)$ we have that,

$$
\begin{align*}
\omega_{1} & =-\gamma=W_{32}=-W_{23} \tag{68}\\
\omega_{2} & =\beta=W_{13}=-W_{31} \tag{69}\\
\omega_{3} & =-\alpha=W_{21}=-W_{12} \tag{70}
\end{align*}
$$

Alternatvely we can obtain the desired result as follows.

$$
\begin{align*}
\mathbf{W} \mathbf{v} & =\boldsymbol{\omega} \times \mathbf{v} \\
W_{k j} v_{j} \mathbf{e}_{k} & =\omega_{i} v_{j} \mathbf{e}_{k} \varepsilon_{i j k} \\
\left(W_{k j} v_{j} \mathbf{e}_{k}\right) \cdot \mathbf{e}_{l} & =\left(\omega_{i} v_{j} \mathbf{e}_{k} \varepsilon_{i j k}\right) \cdot \mathbf{e}_{l} \\
W_{l j} v_{j} & =\omega_{i} v_{j} \varepsilon_{i j l} \\
W_{l j} v_{j}-\omega_{i} v_{j} \varepsilon_{i j l} & =0 \\
\left(W_{l j}-\omega_{i} \varepsilon_{i j l}\right) v_{j} & =0 . \tag{71}
\end{align*}
$$

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 3

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

Since this must again hold for any $v_{i}(i=1,2,3)$, we have,

$$
\begin{equation*}
W_{k j}=\omega_{i} \varepsilon_{i j k} \tag{72}
\end{equation*}
$$

Multiply both sides by $\varepsilon_{k j l}$ and sum over k, j,

$$
\begin{align*}
W_{k j} \varepsilon_{k j l} & =\omega_{i} \varepsilon_{i j k} \varepsilon_{k j l} \\
W_{k j} \varepsilon_{k j l} & =-\omega_{i} \varepsilon_{k j i} \varepsilon_{k j l} \\
W_{k j} \varepsilon_{k j l} & =-\omega_{i} 2 \delta_{i l} \\
W_{k j} \varepsilon_{k j l} & =-2 \omega_{l} . \tag{73}
\end{align*}
$$

Thus we have,

$$
\begin{equation*}
\omega_{l}=-\frac{1}{2} W_{k j} \varepsilon_{k j l} \tag{74}
\end{equation*}
$$

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 3

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

3.2 Differentiation and integration

Problem:

Show that the following relationship holds.

$$
\begin{equation*}
\int_{\partial \Omega} \mathbf{u} \otimes \mathbf{n} d A=\int_{\Omega} \operatorname{grad}(\mathbf{u}) d V \tag{75}
\end{equation*}
$$

Solution:

$$
\begin{align*}
{\left[\int_{\partial \Omega} \mathbf{u} \otimes \mathbf{n}\right]_{i j} d A } & =\int_{\partial \Omega} u_{i} n_{j} d A \\
& =\int_{\Omega} u_{i, j} d V \\
& =\left[\int_{\Omega} \operatorname{grad}(\mathbf{u}) d V\right]_{i j} \tag{76}
\end{align*}
$$

Problem:

Find the derivative of the scalar valued tensor argument function,

$$
\begin{equation*}
f(\mathbf{A})=\operatorname{tr}\left(\mathbf{A}^{2}\right) \tag{77}
\end{equation*}
$$

Solution:
Taking the directional derivative,

$$
\begin{align*}
\frac{\partial \operatorname{tr}\left(\mathbf{A}^{2}\right)}{\partial \mathbf{A}} \cdot \mathbf{H} & \\
& =\left.\frac{d}{d \alpha}\right|_{\alpha=0} \operatorname{tr}\left((\mathbf{A}+\alpha \mathbf{H})^{2}\right) \\
& =\left.\frac{d}{d \alpha}\right|_{\alpha=0} \operatorname{tr}\left(\mathbf{A}^{2}+\alpha \mathbf{H} \mathbf{A}+\alpha \mathbf{A} \mathbf{H}+\alpha^{2} \mathbf{H}^{2}\right) \\
& =\left.\frac{d}{d \alpha}\right|_{\alpha=0} \operatorname{tr}\left(\mathbf{A}^{2}\right)+\alpha \operatorname{tr}(\mathbf{A H}) \alpha \operatorname{tr}(\mathbf{H A})+\operatorname{tr}\left(\mathbf{H}^{2}\right) \\
& =\operatorname{tr}(\mathbf{A H})+\operatorname{tr}(\mathbf{A H}) \\
& =2 \mathbf{A}: \mathbf{A H} \\
& =2 \mathbf{A}^{T}: \mathbf{H} \tag{78}
\end{align*}
$$

Thus we have that,

$$
\begin{equation*}
\frac{\partial \operatorname{tr}\left(\mathbf{A}^{2}\right)}{\partial \mathbf{A}}=2 \mathbf{A}^{T} \tag{79}
\end{equation*}
$$

Alternatively, we can compute this derivative through the simplified index notation.

$$
\begin{align*}
{\left[\frac{\partial \operatorname{tr}\left(\mathbf{A}^{2}\right)}{\partial \mathbf{A}}\right]_{k l} } & =\frac{\partial A_{i j} A_{j i}}{\partial A_{k l}} \\
& =\delta_{i k} \delta_{j l} A_{j i}+A_{i j} \delta_{j k} \delta_{i l} \\
& =2 A_{l k} \\
& =2\left(A^{T}\right)_{k l} \tag{80}
\end{align*}
$$

Thus we again have the relation in equation (79).

ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 3

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

3.3 Rigid body motion

What is the motion for the deformation shown below. Assume that the problem is 2 D , i.e. $\mathbf{X}=\left(X_{1}, X_{2}\right)$. The motion described is the rigid body rotation of a square around the origin O followed by a translation. Obtain the mapping,

$$
\begin{equation*}
\mathbf{x}=\varphi(\mathbf{X}, t) \tag{81}
\end{equation*}
$$

In other words express \mathbf{x} in terms of \mathbf{X}, t. This mapping will have the form of,

$$
\begin{equation*}
\mathbf{x}=\mathbf{Q}(t) \mathbf{X}+\mathbf{c}(t) \tag{82}
\end{equation*}
$$

where $\mathbf{Q}(t)$ will be an orthogonal tensor. Confirm this.

$$
\mathbf{Q}(t)=\left[\begin{array}{cc}
\cos (t) & -\sin (t) \tag{83}\\
\sin (t) & \cos (t)
\end{array}\right]
$$

and thus the motion becomes,

$$
\begin{align*}
\mathbf{x} & =\mathbf{Q}(t) \mathbf{X}+\mathbf{c}(t) \\
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
\cos \theta(t) & -\sin \theta(t) \\
\sin \theta(t) & \cos \theta(t)
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]+\left[\begin{array}{l}
c_{1}(t) \\
c_{2}(t)
\end{array}\right] \tag{84}
\end{align*}
$$

