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1 Useful Definitions or Concepts

1.1 Taking derivatives of functions

So far we have treated scalars, vectors, and 2nd-order tensors. Functions which take any of these types as arguments
and return any of these types can be defined and derivatives of these functions can be obtained respective of their
arguments, i.e. if the argument is a vector we can take a derivative with respect to the vector. Below we introduce the
different notations that are possible.

1.1.1 Differentiating in the symbolic notation

The chart below shows the different combinations that ara available. For example, if the function is scalajfvalued
and takes a vector as an argument, we have,

af(v)
ov

Table 1: Differentiating in symbolic notation
Values
Scalar ) | Vector §) [ Tensor F)

Scalart (i) %{f(t)} % {£(t))} %{F(t)}

Args | Vectorv (8(2,) (;iv{f(V)} %{f(v)} %{F(V)}
(@) o{f(a)} | o{t(A)} | o{F(A)}

@

TensorA { 54 oA oA oA

1.1.2 Differentiating in index notation

When one would like to manipulate the components for calculation, the differentiation of the functions can be ex-
pressed in index notation. For example, if the function is scalar-vafuad takes a tensok as an argument, we
have,

9f(A) Of(A)

A = A% er ¥ e (2)

One must take care in appending the basis veatpssith indices related to differentiation to the end, NOT THE
FRONT. (Though this is a convention and different books may define the differentiation operations differently).

Table 2: Differentiating in index notation

Values
Scalar () |  Vector € = fie;) | TensorF = Fje; @ ej)
Scalart (i) % {f(t)} % {fi(t)ei} % {Fij(t)e; @ e}
Args | Vectorv <8(zkek> 6% {f(v)}ex % {filv)e;} @ ey 6% {Fij(v)e; ® ej} @ ey
TensorA (ajkzek ® el) NafT(:)}ek ® e %A;I)ei} Rer Qe 9iry (QZ:'; @ e} Qe Qe
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1.1.3 Differentiating in simplified index notation

When one would like to manipulate the components for calculation, the differentiation of the functions can be ex-
pressed in index notation. Additionally when it is clear what basis are being used consistently for all objects, we
abreivate the basis for simpler notation. For example, if the function is vector-vllaad takes a vector as an
argument, we have,

Of(f) dfi(v)ei

ov - 8’Uk © ek
_ Ofilv)
n 6vk & ® ek
In simplified index notation(w 3)

avk

One must take care in appending the basis veatpssith indices related to differentiation to the end, NOT THE
FRONT. (Though this is a convention and different books may define the differentiation operations differently).

Table 3: Differentiating in simplified index notation

Values
Scalar () [ Vector § = f;) | Tensor ¥ = F})
d d d d
Scalart (dt) RO o i)} o ()}
Args | Vectorv <£k) a%k {f(v)} % {fi(v)} a%k {Fij(v)}
oA | oA | O{FL(AT]
TensorA <8Akl> 8Akl 8Ak.l aAkl

In the special case when the argument is dependent on the coordinétes we have an even simpler notation.
notation. For example, if the function is vector-valueand takes the coordinatesas an argument, we have,

ofx) _ 0fix)ei
ox o 8xk © ek
= ag;(:) e, e

In simplified index notationagﬁ
Ly

In simplified index notatiory; j(x) (4)
One must take care in appending the basis veatpssith indices related to differentiation to the end, NOT THE
FRONT. (Though this is a convention and different books may define the differentiation operations differently).

Table 4: Differentiating in simplified index notation(coordinate arguments)

Values
Scalar ) | Vector = f;) [ Tensor F = Fj;)
Args | Vectorx (86) fr(x) fik(x) Fijr(x)
T
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1.2 The directional derivative

The directional derivative of a functiofiwith argument in direction’ is defined as,

DI = Afacof(v +ah) ©
—  lim f(v+ah) = f(v) (6)
a—0 «

The expressions on the right hand side are equivalent from the definition of the derivative. This directional derivative is
useful in computing the derivative of a functigrn(scalar, vector, tensor valued), since we have the following relations
between the two.

i = Ty @
D) = T, ®
piam = N8 u ©

1.3 Computing derivatives
To compute the derivative of a function one has two approaches.
1. Compute the directional derivative and extract the derivative.
2. Compute the derivative directly through simplified index calculation.

Depending on the problem one approach may be quicker and easier than the other. To compute the derivative of the
trace function we have the following two approaches.

1. ComputeDtr(A)[H].

2. Computeﬁ—A = 94,
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1.4 Important operators
1.4.1 The gradient operator

Using the operator,
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0 0

one can define the gradient operation on scalar, vector, and tensor fields.

gradf (x)

gradv(x)

gradA (x)

1.4.2 The divergence operator

Using the operator,

Vf(x)
af(x)

ox
af(x)

8.23k Ok
In simplified index notation’”. () _ fa

8$k ’

V ®v(x)
ov(x)

ox
ov;(x)e; _ Ovi(x)

Oxy, @k = Oxy, €i & ek

L . 0vi(x)
In simplified index notation = Vi k
Oz, ’

V ® A(x)
0A(x)

ox
04;;(x)e; ® e; ® e, — 0A4;;(x) e ®e; @ ey

(9l‘k 8$k-
In simplified index notationw = Ak
axk '
(11)
0 0
vV = 87)( = Txkek (12)
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one can define the divergence operation on vector and tensor fields.
divv(x) = V-v(x)
ov;(x)e; 0v;(x)
- 3£L‘k ek = &rk 5ik
Ov; (x)
63%
= Ui
divA(x) = V- -A(x)
04;;(x)e; ® e, _ 0A45(x)
oxy, Ok = O0xy,
9Ai;(x)

a(I}]‘

djke;

In simplified index notation%j(x) =A

: ij,j
Lj

1.4.3 The curl operator

Using the operator,
V = — = —€L (13)

one can define the curl operation on a vector field,
curlv(x) = V xv(x)
31}7;()()61‘
= o
_ avi (X)
B 8Ik K ® @i
0v;(x)

= o, ki€

a.%'k

In simplified index notationaL(x)gkij = U kEkij
6xk.
1.5 Integral theorem

Given any field,
e AscalarT

e AvectorT;
e A 2nd-order tensor;;
e Akth-order tensoff;;...
we can apply the following integral theorem which converts volume integration to surface integration.

/ Tij...pyqu = / Tij...pnqu (14)
Q o

Heren, is the normal vector to the surfadel.
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2 Application of concepts or definitions

Problem:

Show that the relationship,
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df (¢
prwn = LWy (15)
(16)
is valid for a scalar valued scalar argument function.
Solution:
From the Taylor expansion ¢f(t + «h) att we have,
df 2
ft+ ah) f(t)+$(t)ah+0(a ).
Manipulating this we obtain,
ft+ah)—f(t) _ df
" = o (t)h+ O(a) .
From the definition of the directional derivative we have,
pft)h = lm LT =IO
a—0 o
. df
= clylg%) E(t)h +O(a)
_ 4
= E(t)h .
Problem:
Show that the relationship,
_ Of(v)
DfW)b] = =5 (7)
(18)

is valid for a scalar valued vector argument function.
Solution:
From the Taylor expansion ¢f(t + «h) att we have,

f(v+ah) = f(v1+ahy,...,v, +ahy)

81}1

= f(v)+ %(V)ahi +0(a?) .
of

= f(v)+ aa—v(v) -h+0(a?) .

f(Ul»---,Un)-ﬁ-ﬁ(V)ahl—|—----|—

%(v)ahn +0(a?) .
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Manipulating this we obtain,

f(v+a;1— fv g%(v) ‘h+0(a) .

From the definition of the directional derivative we have,

Df(v)h] = lim "

_ of

= Olél_% a—v(v) -h+O(«)

_ of
Problem:
Show that the relationship,

_ Of(A)
DfAH] = == H (19)
is valid for a scalar valued tensor argument function.
Solution:
From the Taylor expansion ¢f(¢t + ah) att we have,
f(A+OéH) = f(All +O¢H11,...,Ann+OLHnn)
_ of of 2
= f(All, ey Hnn) + 8A11 (A)O[Hll + + aAnn (A)O[Hnn + O(OZ ) .
of 2
fA)+ o4, (v)aH;; + O(a”) .
f (Ay. 2
fv)+ aa—A(A) "H+0(”).
Manipulating this we obtain,
fAToH=JA) _ O (p) 1y 0a).

« T HA
From the definition of the directional derivative we have,
f(A+aH) - f(A)

DIANH] = lim !
of .
= i%ﬂ(A)H_‘—O(Q)
_ 9F Ay,
L(a):m

Problem:
Find the derivative of the scalar valued tensor argument function,

tr(A) (20)
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Solution:

Taking the directional derivative,
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otr(A) _d
IA H = % |a:0tr(A =+ OéH)
= ﬁ| tr(A) + atr(H) (21)
= da'*™
= tr(H)
1:H (22)
Thus we have that,
otr(A)
DA 1 (23)
Alternatively, we can compute this derivative through the simplified index notation.
otr(A) _ Otr(A)
oA |,  0Ay
o aAkl
= Okl
= Ou (24)
Thus we again have the relation in equation (23).
Problem:
Find the derivative of the scalar valued vector argument function,
[[v]] (25)
Solution:
Taking the directional derivative,
llvl| d
B h~(v+ah)+(v+ah)~h|
2/(vtah) (vtah) '
_v-h
vl
\'%
Il
(26)
Thus we have that,
vl _ v
—_—= 27)
ov vl



ETH Zurich Institute for Mechanical Systems

Department of Mechanical and Process Engineering Center of Mechanics
Winter 06/07

Nonlinear Continuum Mechanics

Exercise 3 Prof. Dr. Sanjay Govindjee

Alternatively, we can compute this derivative through the simplified index notation.

]
k

ov vy,
- 1 8vivi
- 2/;0; Oug
1
= oo (Gikvi i0;
vy (o + o)
1
= o (2u0)
2[|v]|
— U (28)
V|
Thus we again have the relation in equation (27).
Problem:
Find the derivative of the scalar valued vector argument function,
fv) = a-v (29)
wherea is a constant vector.
Solution:
Taking the directional derivative,
da-v
-h
ov
= — a-(v+ah)
d a=0
= a-h
a=0
= a-h (30)
Thus we have that,
da-v
= 31
5 2 (31)
Alternatively, we can compute this derivative through the simplified index notation.
da-v _ Oa;v;
ov |, T Oug
= ailix
= a; (32)

Thus we again have the relation in equation (31).

Problem:
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Find the derivative of the scalar valued vector argument function,

Solution:

Taking the directional derivative,

ov-v

ov h

= — (v + ah) - (v + ah)

a=0

= h-(v+ah)+(v+ah)-h

= 2v-h

Thus we have that,

ov-v
ov
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(33)

(34)

(39)

Alternatively, we can compute this derivative through the simplified index notation.

ov - v Av;v;
l: ov :| k 8vk
= 0ikv; + vidik
= 2ug

Thus we again have the relation in equation (35).
Problem:

Find the derivative of the vector valued vector argument function,

fv) = v
Solution:
Taking the directional derivative,
ov
ov
d
= — (v+ah)
do a=0
= (v+ah)
a=0
= h
= 1h

10

(36)

(37)

(38)
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Thus we have that,
ov

Alternatively, we can compute this derivative through the simplified index notation.
ovi  _ 9u
ov |, T Oug
= du (40)

Thus we again have the relation in equation (39).
Problem:

Find the derivative of the vector valued vector argument function,

flv) = Av (41)
whereA is a constant tensor.
Solution:
Taking the directional derivative,
OAv
= .h
ov
-4 A(v+ah)
T da 0
= Ah
a=0
= Ah (42)
Thus we have that,
ov
Alternatively, we can compute this derivative through the simplified index notation.
O0Av - 6Aijvj
ov ik o (%k
Aijdjk
Aik (44)

Thus we again have the relation in equation (43).
Problem:
Find the derivative of the scalar valued tensor argument function,
f(A) = A:B (45)

whereB is a constant tensor.

11
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Solution:

Taking the directional derivative,

OA :B d
:H = — A H):B
oA dal| At oH)
= H:B
a=0
- B:H (46)
Thus we have that,
OA :B
= 47
A B (47)
Alternatively, we can compute this derivative through the simplified index notation.
OA :B _ 8AUBZJ
oA |,  0Aw
= DBy;éidj
= Ap (48)

Thus we again have the relation in equation (47).
Problem:

Find the derivative of the scalar valued tensor argument function,

f(A) = A:A (49)
Solution:
Taking the directional derivative,
0A : A d
H = — A H): (A H
DA daa:o( +aoH) : (A +aH)
= H:(A+aoH)+ (A+aH): H
a=0
= 2A:H (50)
Thus we have that,
0A : A
= 51
A 2A (51)
Alternatively, we can compute this derivative through the simplified index notation.
3A A o aA”A”
oA |, 0AR
= 0idjiAij + Aijdirds
245 (52)

Thus we again have the relation in equation (51).

12
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Problem:

Show that the following relationship holds.

/ VYu-ndA = /div(\Ifu)dV (53)
oN Q
Solution:
/ Ju-ndd = / Wu;n;dA
o o0
= /(\I/’U,l)’l dv
Q
= /div(\I/u) dv (54)
Q
Problem:
Show that the following relationship holds.
/ YAndA = /div(\IfA)dV (55)
o0 Q
Solution:
oN i on
= / (\I'Aij)jdV
o ;
= {/ div(TA) dv} (56)
Q %
Problem:
Show that the following relationship holds.
/ u-AndA = / div(ATu)dV (57)
o0 Q

Solution:

= / div (ATu) dV (58)
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Problem:

Show that the following relationship holds.

div(%u) = Udiv(u)+ u-gradl
Solution:
div(Pu) = (Yue;);®e;
= Wu; + Pu,,
= gradl - u + ¥diva
Problem:

Show that the following relationship holds.
div(?A) = Udiv(A)+ Agradv

Solution:

div(VA)], = [div(TA)]-e
(VAper ®e) }

[
= [(\I/Akl 51161@} -e;
(U Aw) , 61500
(WA;) ;
= VU A; —|—\I'AU,J
[AgradV], + [VdivA],

14
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(59)

(60)

(61)

(62)
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3 Homework
3.1 The skew tensor and its axial vector
Given a 2nd-order skew tens®, show that there exists a vectorc R3 such that,
Wv = wxv VWweR?. (63)

This vectorw is called the axial vector W . Express the components®fin terms of the components V. (Hint:
Think of how many independent components the skew tensor has. Does this match the number of components of a
vector inR3?)

Solution:

In components, a skew symmetric ten3§rcan be written as the matrix,

0 a 0
W = —a 0 ~ . (64)
g =y 0

It is clear that this has only three independent degrees of freedom, which matches that of a VRétoGimen an
arbitrary vector,

v o= [vr.v,0]" (65)
we have,
avy + B

Wv = —aw] + Yus (66)

L —Buy — vz

i W23 — W3V2
WXV = w3V] — W1U3 . (67)

| W1U2 — Wal1

Since these expressions must be equal foranly = 1, 2, 3) we have that,

w1 = —y =Wz =Wy (68)
wy = [B=Wiz=-Ws (69)
wy = —a=Wy=-Wip. (70)

Alternatvely we can obtain the desired result as follows.

Wv = wxv
ijvjek = WVj€L&jk
(Wijvjer) e = (wivjergijr) - €
le’Uj =  WiVjE451
VVlj’Uj — WiVE1 = 0
(le — wiEZ‘jl) ’Uj = 0. (71)

15
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Since this must again hold for amy (i = 1,2, 3), we have,

Wi = wigijk - (72)
Multiply both sides bye;; and sum ovek, j,
Wiickil = Wi€ijkEkii
Wijckji = —Wi€kji€kijil
Wijerji = —wi204
ijskjl = 72&)1 . (73)
Thus we have,
1
w; = _§ij5kjl . (74)

16
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3.2 Differentiation and integration
Problem:

Show that the following relationship holds.
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/ u®ndA = / gradu)dV (75)
o0 Q
Solution:
{/ u®n] dA = / un;dA
o ij o
= / ui,jdV
Q
= {/ grac{u)dv} (76)
Q ij
Problem:
Find the derivative of the scalar valued tensor argument function,
f(A) = tr(A?) (77)
Solution:
Taking the directional derivative,
otr(A?)
oA o
_ 4 tr((A + oH)?)
a da a=0
= a4 tr(A? + oHA + aAH + o*H?)
da|,_,
= di tr(A?) + atr(AH)atr(HA) + tr(H?)
Q a=0
= tr(AH) +tr(AH)
= 21:AH
= 2AT:H (78)
Thus we have that,
otr(A?) T
=2A 7
DA (79)
Alternatively, we can compute this derivative through the simplified index notation.
otr(A?) 04 Ay
oA |,  0Aw
= OidjiAji + Aii0jk0n
= 24
T
= 2(47), (80)

Thus we again have the relation in equation (79).

17
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3.3 Rigid body motion

What is the motion for the deformation shown below. Assume that the problem is 2X, #e(X;, X2). The motion
described is the rigid body rotation of a square around the ofidiollowed by a translation. Obtain the mapping,

x = p(X,t). (81)
In other words express in terms ofX, ¢. This mapping will have the form of,
x = Q)X + c(t) (82)

whereQ(t) will be an orthogonal tensor. Confirm this.

Reference Current
A  Configuration A Configuration
E, X=0, %,) &0 x=04 %)
QO
0(t)
o T
Solution: G
. o] > o E >
The rotationQ(t) can be expressed as, ' *
_ cos(t) —sin(t)
Q) = [ sin(t)  cos(t) (83)
and thus the motion becomes,
x = Q)X +ct)
X _ cosO(t) —sinf(t) X1 c1(t)
[ To } o [ sinf(t)  cosf(t) X, + co(t) (84)

18



