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1 Useful Definitions or Concepts

1.1 Notation
1.1.1 The representation of 2nd-order tensors and vectors as matrices and column vectors

When actual computation of 2nd-order tensors and vectors must be conducted, they must be represented in their
component form. The components are given with respect to an orthonormal basis {ei}. With respect to this basis,
2nd-order tensor A = Aijei ⊗ ej is represented as,

[A]e =

 A11 A12 A13

A21 A22 A23

A31 A32 A33


e

(1)

and vector u = uiei as,

[u]e =

 u1

u2

u3


e

. (2)

A bracket with a subscript {e} to denote the basis with which the components are taken is put around the 2nd-order
tensor or vector to express the matrix or column vector form. With this rule of representation, one can confirm that,

v = Au (3)

can be represented as,

[v]e = [A]e [u]e (4)

and,

C = AB (5)

as,

[C]e = [A]e [B]e . (6)

Thus we see that standard operations of vectors and matrices hold in the form learned in linear algebra. The computa-
tion of the trace and determinant also follows the definitions given for matrices presented in linear algebra.

tr (A) = tr ([A]e) (7)
det (A) = det ([A]e) (8)
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1.1.2 Different representation of tensors

A vector or 2nd-order tensor can be represented in several different notations. Here we summarize three.

1. Symbolic notation(coordinate free): No dependence on coordinate system.

u A a⊗ b

2. Index notation: Representation with respect to a coordinate system {ei}.

uiei Aijei ⊗ ej aibjei ⊗ ej

3. Simplified index notation: A simplified version of the index notation where all tensors and vectors are expressed
with respect to the same coordinate system {ei}. Thus we abreviate writing the portion corresponding to the
basis. This can also be considered as looking at the components of the tensor or vector in their matrix represen-
tation.

ui Aij aibj

It is important that one be accustomed to be able to move freely from one to another. Some simple examples are,

c = a + b ⇒ ciei = ajej + bkek ⇒ ci = ai + bi

C = A + B ⇒ Cijei ⊗ ej = Aklek ⊗ el + Bpqep ⊗ eq ⇒ Cij = Aij + Bij

v = Au ⇒ viei = Ajkukej ⇒ vi = Aijuj

C = AB ⇒ Cijei ⊗ ej = AikBkjei ⊗ ej ⇒ Cij = AikBkj .

(9)

The convention that double indices are always summed still hold.

1.1.3 Free indices and dummy indices

When using indicial notation one must be take care whether the index is a free or dummy index.

• free: An index that is free from not being summed over.

• dummy: An index that is summed over, and can be replaced by any other symbol, i.e. a dummy.

In the expression,

vi = Aijuj = Aikuk (10)

j, k are dummy indices since they are summed over, and i is a free index. In an equation, the free indices must match
between corresponding components. In the case above, we cannot have,

vp = Aijuj (11)

2



ETH Zurich
Department of Mechanical and Process Engineering
Winter 06/07
Nonlinear Continuum Mechanics
Exercise 2

Institute for Mechanical Systems
Center of Mechanics

Prof. Dr. Sanjay Govindjee

1.2 4th-order tensors
A 4th-order tensor A can be represented in index notation as,

Aijklei ⊗ ej ⊗ ek ⊗ el (12)

or in simplified index notation as just,

Aijkl . (13)

The tensor product of two 2nd-order tensors A,B also produces a 4th-order tensor,

A⊗B = Aijei ⊗ ejBkl ⊗ ek ⊗ el

= AijBklei ⊗ ej ⊗ ek ⊗ el (14)

or in simplified index notation as just,

AijBkl . (15)

The tensor product of four vectors can also produce a 4th-order tensor,

a⊗ b⊗ c⊗ d = aiei ⊗ bjej ⊗ ckek ⊗ dlel

= aibjckdlei ⊗ ej ⊗ ek ⊗ el (16)

or in simplified index notation as just,

aibjckdl . (17)

The operations are defined as,

(a⊗ b⊗ c⊗ d) : (u⊗ v) = [(c⊗ d) : (u⊗ v)] (a⊗ b)
= (c · u)(d · v)a⊗ b (18)

(w ⊗ z) : (a⊗ b⊗ c⊗ d) = [(w ⊗ z) : (a⊗ b)] (c⊗ d)
= (w · a)(z · b)c⊗ d (19)

1.3 The triple scalar product
The triple scalar product of vectors a,b, c is defined as,

[a b c] = (a× b) · c (20)
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2 The permutation
The permutation εijk is defined as follows,

εijk =

 1 (i,j,k)=(123),(231),(312)
−1 (i,j,k)=(132),(213),(321)

0 (all other combinations)
. (21)

Such that when the indices are in increasing order the value is postive 1, and when the indices are in decreasing order
the value is negative 1. Otherwise it is 0. This definition is motivated by the need for defining an easy way to write the
cross product. Observe the following relation for an orthonormal basis(right handed),

e1 × e2 = e3 = ε123e3

e2 × e3 = e1 = ε231e1

e3 × e1 = e2 = ε312e2

e1 × e3 = −e2 = ε132e2

e2 × e1 = −e3 = ε213e3

e3 × e2 = −e1 = ε312e1

(22)

and,

e1 × e1 = 0 = ε11kek

e2 × e2 = 0 = ε22kek

e3 × e3 = 0 = ε33kek

(23)

where the k here is arbitrary. If we write this in more compact notation we obtain,

ei × ej = εijkek . (24)

Given this notation, we can easily express the cross product between vectors a and b as,

a× b = (aiei)× (bjej)
= aibjei × ej

= aibjεijkek (25)

Remarks:

The permutation has the properties that,

εijk = εjki = εkij (26)

and,

εijk = −εjik . (27)

There is exists the following relation between the permutation and the Kronecker delta,

1.

εijkεpqk = δipδjq − δiqδjp (28)

Here i, j, p, q are free indices and must match on both sides of the equation. k is a dummy index.
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2.

εijkεpjk = 2δip (29)

Here i, p are free indices and must match on both sides of the equation. j, k are dummy indices.

3.

εijkεijk = 6 (30)
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3 Application of concepts or definitions
Problem:

What is the simplified index notation for,

c = a + b (31)

Solution:

Take an inner product of both sides with ei.

c · ei = (a + b) · ei

ci = ai + bi (32)

Problem:

What is the simplified index notation for,

C = A + B (33)

Solution:

Apply ei from the left, and apply ej from the right on both sides of the equation.

ei ·Cej = ei · (A + B) ej

Cij = Aij + Bij (34)

Problem:

What is the simplified index notation for,

v = Au (35)

Solution:

Apply ei from the left on both sides of the equation.

ei · v = ei ·Au

= ei ·A (ujej)
vi = ei ·Aejuj

= Aijuj (36)

Problem:

What is the simplified index notation for,

C = AB (37)

Solution:
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C = AB

= Apqep ⊗ eqBrser ⊗ es

= ApqBrsδqrep ⊗ es

= AprBrsep ⊗ es

Apply ei from the left, and apply ej from the right on both sides of the equation.

ei ·Cej = ei · (AprBrsep ⊗ es) ej

Cij = AprBrsδipδsj

= AirBrj (38)

Problem:

Show that,

v = Au (39)

can be represented in the orthonormal basis {ei} by the relationship,

[v]e = [A]e [u]e (40)

Solution:

From the previous exercise we see that with respect to the orthonormal basis {ei}, we have

vi = Aijuj (41)

between the components. If we write this in matrix notation we have, v1

v2

v3


e

=

 A11 A12 A13

A21 A22 A23

A31 A32 A33


e

 u1

u2

u3


e

(42)

[v]e = [A]e [u]e (43)

Problem:

Show that,

C = AB (44)

can be represented in the orthonormal basis {ei} by the relationship,

[C]e = [A]e [B]e (45)

Solution:

From the previous exercise we see that with respect to the orthonormal basis {ei}, we have

Cij = AikBkj (46)

between the components. If we write this in matrix notation we have, C11 C12 C13

C21 C22 C23

C31 C32 C33


e

=

 A11 A12 A13

A21 A22 A23

A31 A32 A33


e

 A11 A12 A13

A21 A22 A23

A31 A32 A33


e

(47)

[C]e = [A]e [B]e (48)
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Problem:

What is the simplified index notation for,

w = Au + v (49)

Solution:

Apply ei from the left on both sides of the equation.

ei ·w = ei · (Au + v)
wi = ei ·Aejuj + vi . (50)

Here we have used the relationship shown previously in this handout.

Problem:

Confirm that,

a× b = aibjεijkek (51)

and the expression that you know,

a× b =

 a1

a2

a3

×
 b1

b2

b3

 (52)

=

 a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

 (53)

are the same.

Problem:

Show that,

[a b c] = aibjckεijk (54)

= det

 a1 b1 c1

a2 b2 c2

a3 b3 c3

 (55)
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4 Exercise
Problem:

Show that, (
AT

)
ij

= Aji (56)

Solution:

Apply ei from the left, and apply ej from the right.

ei ·AT ej = Aei · ej

= ej ·Aei

= Aji (57)

Problem:

What is the simplified index notation for,

C = AT + B (58)

Solution:

Apply ei from the left, and apply ej from the right on both sides of the equation.

ei ·Cej = ei ·
(
AT + B

)
ej

Cij =
(
AT

)
ij

+ Bij

= Aji + Bij (59)

Problem:

Show that,

(a⊗ b) : (c⊗ d) = (a · c) (b · d) (60)

Solution:

(a⊗ b) : (c⊗ d) = tr
(
(a⊗ b)T (c⊗ d)

)
= tr ((b⊗ a) (c⊗ d))
= tr ((a · c) (b⊗ d))
= tr ((a · c)b⊗ d)
= (a · c) tr (b⊗ d)
= (a · c) (b · d) (61)

Problem:

Show that,

(w ⊗ z) : (a⊗ b⊗ c⊗ d) : (u⊗ v) = (a ·w)(b · z)(c · u)(d · v) (62)
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Solution:

Straightforward application of the definitions yield the following.

(w ⊗ z) : (a⊗ b⊗ c⊗ d) : (u⊗ v) = (w ⊗ z) : [(c⊗ d) : (u⊗ v)] (a⊗ b)
= [(c⊗ d) : (u⊗ v)] [(w ⊗ z) : (a⊗ b)]
= (a ·w)(b · z)(c · u)(d · v) (63)
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5 Homework

5.1 Using the identity related with the permutation
Using the identity,

εijkεpqk = δipδjq − δiqδjp (64)

show the relationship,

(u× v)×w = (u ·w)v − (v ·w)u . (65)

5.2 The physical interpretation of the determinant
The determinant of a tensor A is related to the change of volume. In class a definition of the determinant was given
as,

det (A) =
[Aa Ab Ac]

[a b c]
(66)

for arbitrary vectors a,b. This can be rewritten as,

[Aa Ab Ac] = det (A) [a b c] . (67)

Since the triple scalar product can be interpreted as the volume of the parallelpiped ’spanned’ by a,b, c, this rela-
tionship says that the volume of the parallelpiped ’spanned’ by the mapped vectors Aa,Ab,Ac is det (A) times this
value.

Given vectors,

a =

 1
0
0


e

, b =

 1
1
0


e

, c =

 0
0
1


e

(68)

and tensor

A =

 4 0 0
0 1 0
0 0 2


e

(69)

confirm that,

Volume of parallelpiped spanned by a,b,c = [a b c] (70)
Volume of parallelpiped spanned by Aa,Ab,Ac = [Aa Ab Ac] . (71)

Then compute det (A) and confirm that,

[Volume of parallelpiped spanned by Aa,Ab,Ac] = det (A)× [Volume of parallelpiped spanned by a,b,c] (72)
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5.3 4th-order tensors

1⊗ 1 = (δijei ⊗ ej)⊗ (δklek ⊗ el) (73)
= δijδklei ⊗ ej ⊗ ek ⊗ el (74)

I = δikδjlei ⊗ ej ⊗ ek ⊗ el (75)
I = δilδjkei ⊗ ej ⊗ ek ⊗ el (76)

Isymm =
1
2

(
I + I

)
(77)

Iskew =
1
2

(
I− I

)
(78)

Show the following,

1⊗ 1 : A = tr (A)1 (79)
I : A = A (80)
I : A = AT (81)

Isymm : A = Asymm (82)
Iskew : A = Askew (83)

where A is an arbitrary 2nd-order tensor.

12


