ETH Zurich Department of Mechanical and Process Engineering Winter 06/07 Nonlinear Continuum Mechanics Exercise 12 Institute for Mechanical Systems Center of Mechanics

Prof. Dr. Sanjay Govindjee

1 Homework

1.1 Numerical computation of viscoelastic material

Compute the response of a General Standard Linear Solid with,

- $E_{\infty} = 1 \tag{1}$
- $E_1 = 1$ (2)
- $\eta_1 = 10 \tag{3}$

$$\tau = \frac{\eta_1}{E_1} \,. \tag{4}$$

Use the following numerical algorithm introduced in class.

Algorithm: Given σ_{neq}^{n} and ε^{n+1} , compute σ^{n} . 1. Compute σ_{eq}^{n+1} . 2. Compute σ_{neq}^{n+1} . $\sigma_{neq}^{n+1} = E_{\infty}\varepsilon^{n+1}$ 2. Compute σ_{neq}^{n+1} . $\sigma_{neq}^{n+1} = e^{\frac{-\Delta t}{\tau}}\sigma_{neq}^{n} + e^{\frac{-\Delta t}{2\tau}}\frac{E_{1}}{E_{\infty}}[\sigma_{eq}^{n+1} - \sigma_{eq}^{n}]$ 3. Compute σ^{n+1} . $\sigma^{n+1} = \sigma_{neq}^{n+1} + \sigma_{eq}^{n+1}$

Compute the time history stress response for the following two cases.

1.1.1 Creep test

Apply a step strain,

$$\varepsilon(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$$
(5)

and compute the stress. Plot the stress time history response.

1.1.2 Frequency response

Apply a sinusoidal strain history,

$$\varepsilon(t) = \begin{cases} 0 & t < 0\\ \sin(\omega t) & t \ge 0 \end{cases}$$
(6)

with varying frequencies, $\omega = 0.01, 0.1, 1.0$. Plot the stress time history response and stress-strain relationship for each frequency.