Structural Engineering,

Argument for $\theta_{A+B}=\theta_{B}=\theta_{B}$: A Temperature

Consider two systems A and B that are independently in equilibrium with their own heat bathes such that they have canonical distributions

$$
\begin{align*}
& \rho_{A}\left(\boldsymbol{y}_{A}\right)=C_{A} \exp \left[-H_{A} / \theta_{A}\right] \tag{1}\\
& \rho_{B}\left(\boldsymbol{y}_{B}\right)=C_{B} \exp \left[-H_{B} / \theta_{B}\right] . \tag{2}
\end{align*}
$$

Assume now that the two systems are brought together and now have a distribution

$$
\begin{equation*}
\rho_{A+B}\left(\boldsymbol{y}_{A}, \boldsymbol{y}_{B}\right)=C_{A+B} \exp \left[-H_{A+B} / \theta_{A+B}\right] . \tag{3}
\end{equation*}
$$

Suppose during this process, A and B remain in equilibrium - nothing changes. Then

$$
\begin{equation*}
\rho_{A+B}=\rho_{A} \rho_{B} . \tag{4}
\end{equation*}
$$

Let us now assume weak interaction and integrate both sides of eqn (4) over the degrees of freedom of A we get

$$
\begin{equation*}
\frac{C_{A+B}}{\tilde{C}_{A}} \exp \left[-H_{B} / \theta_{A+B}\right]=C_{B} \exp \left[-H_{B} / \theta_{B}\right], \tag{5}
\end{equation*}
$$

where $\tilde{C}_{A}=\int_{\Gamma_{A}} \exp \left[-H_{A} / \theta_{A+B}\right]$. Recall that weak interaction says that $H_{A+B}=H_{A}+H_{B}$ for the purposes of integrations over phase space. Since eqn (5) has to hold for all values of \boldsymbol{y}_{B} one find that $\theta_{A+B}=\theta_{B}$. Similarly if one integrates both sides of eqn (4) over Γ_{B}, one finds $\theta_{A+B}=\theta_{A}$. Thus θ functions exactly like a (absolute) temperature.

