1 Pair Potentials and Cauchy Symmetry

Here are a few more details on why pair potentials lead to Cauchy symmetry. Consider the potential energy of the crystal at zero temperature

$$
\begin{equation*}
V_{o}(\boldsymbol{F})=\frac{1}{2} \sum_{\substack{i, j \\ i \neq j}} \phi\left(\left\|\boldsymbol{x}_{i j}\right\|\right) \tag{1}
\end{equation*}
$$

where $\boldsymbol{x}_{i j}=\boldsymbol{x}_{j}-\boldsymbol{x}_{i}$ is the vector from atom i to atom j and $\phi(\cdot)$ is a given potential. Note that by the Cauchy-Born assumption

$$
\begin{equation*}
\left\|\boldsymbol{x}_{i j}\right\|=\sqrt{\boldsymbol{X}_{i j} \cdot 2 \boldsymbol{E} \boldsymbol{X}_{i j}-\boldsymbol{X}_{i j} \cdot \boldsymbol{X}_{i j}} \tag{2}
\end{equation*}
$$

for a simple lattice and that in the linearized case we can replace the GreenLagrange strain by ε, the small strain tensor. With this at hand,

$$
\begin{equation*}
\frac{\partial V_{o}}{\partial \varepsilon}=\frac{1}{2} \sum_{\substack{i, j \\ i \neq j}} \phi^{\prime} \frac{\partial\left\|\boldsymbol{x}_{i j}\right\|}{\partial \varepsilon}=\frac{1}{2} \sum_{\substack{i, j \\ i \neq j}} \phi^{\prime}\left\|\boldsymbol{x}_{i j}\right\| \boldsymbol{n}_{i j} \otimes \boldsymbol{n}_{i j}, \tag{3}
\end{equation*}
$$

where $\boldsymbol{n}_{i j}=\boldsymbol{x}_{i j} /\left\|\boldsymbol{x}_{i j}\right\|$. The second derivative (the stiffness) yields:

$$
\begin{equation*}
\frac{\partial^{2} V_{o}}{\partial \boldsymbol{\varepsilon} \partial \varepsilon}=\frac{1}{2} \sum_{\substack{i, j \\ i \neq j}}\left[\phi^{\prime \prime}-\frac{\phi^{\prime}}{\left\|\boldsymbol{x}_{i j}\right\|}\right]\left\|\boldsymbol{x}_{i j}\right\|^{2} \boldsymbol{n}_{i j} \otimes \boldsymbol{n}_{i j} \otimes \boldsymbol{n}_{i j} \otimes \boldsymbol{n}_{i j} \tag{4}
\end{equation*}
$$

This last expression clearly has minor, major, as well as Cauchy symmetries. This then produces some non-physical results. For example with an isotropic materials it requires $C_{1122}=C_{1212}$ - forcing $2 \mu+\lambda=\mu$ and only one elastic constant. A better (crystollographic) example comes from the triclinic material. In general a triclinic material possesses no material symmetries and thus has 21 independent material constants (18 if you do not count the axes directions). With Cauchy symmetry one obtains 6 further inter-relations beyond those of major and minor symmetry resulting in only 15 material constants for a triclinic material (12 without axes) which is definitely wrong! In this situation the moduli in Voigt notation ${ }^{1}$ (with Berkeley ordering [11, 22, 33, 12, 23, 31]) looks like:

$$
\mathbb{C} \rightarrow\left[\begin{array}{cccccc}
C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \tag{5}\\
& C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\
& & C_{33} & C_{34} & C_{35} & C_{36} \\
& & & C_{12} & C_{26} & C_{15} \\
& & & & C_{23} & C_{34} \\
& & & & & C_{13}
\end{array}\right] .
$$

[^0]
[^0]: ${ }^{1}$ In Voigt's original work he orders the index pairs as $[11,22,33,23,31,12]$.

