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1 Discrete States and Non-dimensionality

In J. Weiner’s book he treats the statistical mechanics problem from a purely
classical point of view. This treatment provides expressions that are correct in
the end, but lead to certain troubling inconsistencies. For example, we find in
Weiner’s discussion, expressions that involve the logarithm of dimensional quan-
tities such as in the expression for the free energy as Ψ = −kT ln(Z), where the
partition function Z has units of volume of phase space, or in Shanon’s treat-
ment of uncertainty H(ρ) = −

∫
Γ

ρ ln(ρ) dqdp, where ρ has units of inverse phase
space volume. A very quick way around these issues is to simply declare that
our equations of motion are described in terms of non-dimensional coordinates.
However, this quick way out creates other uncomfortable issues and it also ig-
nores a fundamental fact of physics which is that all states are in reality discrete.
Accounting for the discrete nature of physical states leads to a resolution of the
non-dimensionality problems and at the same time expands our understanding
of statistical mechanics.

2 Discrete States

The theoretical basis of classical mechanics is quantum mechanics.1 In a quan-
tum mechanical system, the states are distributed in a discrete sense. Thus,
while, in classical mechanics the state of a system is generally described via
continuous variables, in quantum mechanics the state of a system is described
by variables that take discrete values. Relevant to statistical mechanics one
would then speak of the probability pn of the system being in its nth state. For
example, a quantum mechanical harmonic oscillator can take on energy values
En = ( 1

2 + n)~ω, where n = 0, 1, 2, · · · is the quantum number, ~ = h/2π (h
being Planck’s constant), and ω is the oscillator’s frequency. Notice that as the
energy of the system grows, the relative spacing of the allowable energy states
decreases as ∼ 1/n and thus it becomes permissible to think of a continuous
distribution of energy states; i.e. one reaches the classical limit where any energy
state is permissible. For a proper statistical mechanical formulation, recognizing
this issue is important.

1Oddly, however, the construction of the theory of quantum mechanics is circular in that
quantum mechanical descriptions are constructed so that they have the correct classical limit.
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2.1 Discrete Statistical Mechanics

It is instructive to consider what occurs with our development of statistical
mechanics if we are to consider that a system can only be in a set of discrete
states. Consider first a system with total energy between E and E+δE that can
be in Ω(E) different quantum states all in this energy range2. Let us further
assume (not knowing any better) that each of these states is equally likely;
i.e. we have a micro-canonical ensemble. If our system, is composed of two
sub-systems A and B and system A has energy EA then system B will have
energy EB = E − EA. The fraction of states of the total system compatible
with this condition will be ΩB(E − EA)/Ω(E) and thus the probability of A
having an energy EA is p(EA) = ΩB(E − EA)/Ω(E) = CΩB(E − EA)/ΩB(E),
where C only depends upon the total energy E. Let us now assume that the B
is a heat bath (i.e. it is quite large in comparison to A). In this case, we will
have EA being small in comparison to E, which tells us that we may be able to
expand our expressions in a Taylor series. However, recall that, at least in our
classical argument, that the number of available states grows very quickly with
respect to energy. Thus ΩB(·) is a fast varying function3 of its argument. Thus
to obtain a better approximation, we will first take the logarithm of both sides
before expanding in a Taylor series.

ln(p(EA)) = ln(C) + ln(ΩB(E − EA))− ln(ΩB(E)) (1)

≈ ln(C) + ln(ΩB(E)) +
d ln(ΩB(EB))

d(EB)

∣∣∣∣
EB=E

(−EA)

− ln(ΩB(E)) (2)

≈ ln(C)− d ln(ΩB(EB))
d(EB)

∣∣∣∣
EB=E

(EA) . (3)

If we now define β = d(ln(ΩB(EB)))/dEB (evaluated at EB = E), then we have
that

p(EA) = C exp(−βEA) , (4)

an expression equivalent to the one we derived in the classical case. The nor-
malization constant, is simply the inverse of the partition function

Z =
∑
A

exp(−βEA) , (5)

where the sum is over all (discrete) states of A such that system B has energy
E − EA.

Remarks:

1. The canonical probability is given by p(EA) = exp(−βEA)/Z.
2Note that in quantum mechanics it is difficult to exactly know the energy of a system with-

out measuring its state for an infinite amount of time. The δE accounts for this fundamental
issue.

3Ω divided by the spacing of the energy levels is equivalent to structure function Ω in
Weiner
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2. Notice that the partition function, Z =
∑

A exp(−βEA), is non-dimensional.
In this notation, A effectively becomes the quantum number.

3. Expressions like Ψ = −kT ln(Z) now have sound meaning. We now are
taking the logarithm of a dimensionless quantity.

4. β as defined here is the same as 1/θ in Weiner and thus functions as a
thermodynamic temperature via the same arguments we made previously.

5. Notice that the probability (distribution) is also non-dimensional.

6. Phase space averages are easily computed. For a phase function F , we have
F̄ =

∑
A FA exp(−βEA)/Z, where FA is the value of our phase function

on the A-th state of the system.

2.2 Continuous States

In the classical setting we presume that the variable y = (q, p) defines the state
of our system and that this variable takes on continuous values. This, however,
is not correct from a quantum mechanical viewpoint. A system can only take
on discrete values and this should be accounted for. Let us first consider the
partition function. In the discrete setting we compute a sum over all accessible
states. If we wish to move from a discrete state variable n to a continuous one
y then we have to take account of the number of discrete states available to our
system per unit of continuous phase space. For example if our system consists
of a single particle, then the number of states of the system in a phase space
volume dy would be dy/ho where ho is some constant with units of length times
momentum4; i.e. in a unit volume of phase space we assume that there are ho

countable states. The partition function itself is a sum over all possible states.
If we wish to convert this discrete sum to a continuous integration we will have
the following equivalence:

Z =
∑

n

exp(−βEn) =
∫

y

exp(−βE(y))
dy

ho
. (6)

In this way, we account for the correct number of states of the system when
performing the integration and we retain the non-dimensional status of the
partition function. If we now consider the canonical distribution, we see that it
too remains non-dimensional: ρ(E) = exp(−βE)/Z.

Remarks:

1. If our system consists of N particles in R3, we will instead have

Z =
∫

e−βE(y) dy

h3N
o

. (7)

4The minimum possible value for this constant is ~ by Heissenberg’s uncertainty principle.
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2. The proper accounting of the number of states of the system, leads us
to naturally non-dimensional quantities. It also sets the zero point of
our thermodynamic energy functions. When computing thermodynamic
forces, however, this point plays no role as the phase space cell volume
drops out upon differentiation.

3. This accounting of discrete states also allows us to avoid the famous Gibbs
paradox for ideal gases of indistinguishable particles. If a gas is formed of
indistinguishable particles, then the sum over all states for the computa-
tion of the partition function should not double count states which simply
correspond to the exchange of position of two particles. To effect this,
using (7), one needs to formulate rather complex limits of integration – as
opposed to the usual −∞ to ∞. A quick, and easy solution, is to retain
unconstrained integration and simply divide the result by the number of
possible indistinguishable permutations of the particles; i.e. Z → Z/N !.
If one does this, then one will obtain the correct thermodynamic functions
for gases of indistinguishable particles – the usual case.
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