## Midterm Exam: CE235 / ME279

Due Friday 10/22/2013

| Problem | Score |
| :--- | ---: |
| $\# 1$ | $/ 20$ |
| $\# 2$ | $/ 40$ |
| $\# 3$ | $/ 40$ |
| Total | $/ 100$ |

Name

## SID

Permitted Materials: Class notes, books, and necessary computing environments (e.g. Matlab, Mathematica, etc.).

Honor Code: I have not given or received aid in this examination. I have taken an active part in seeing to it that others as well as myself uphold the spirit and letter of this Honor Code.
(Signature)

1. Consider the (bSpace) notes on the Gibbs paradox and additivity of the thermodynamic functions. Provide a discussion with quantitative estimates for the box-gas to ensure the additivity assumption, say for entropy or other thermodynamic functions, holds.
2. In computing the properties of crystals, we have made use of the Born - von Karmen periodicity assumption. Consider a one-dimensional crystal, with a single atom in the basis, and discuss the impact of the periodic boundary condition versus the use of alternate boundary conditions, for example fixed-fixed or free-free boundary conditions. Provide quantitative estimates to back up your statements. Be sure to discuss what happens as $N \rightarrow \infty$.
3. Consider a system that consists of two elements in contact with a heat bath of temperature $T$. Each element has a single degree of freedom $\mu_{i}(i=\{1,2\})$ that takes on the value of either +1 of -1 (spin-up or spin-down). The elements of the system are massless and thus have no kinetic contribution to the Hamiltonian. Further assume that the system is subject to an external (controlled) field $B$ that interacts with the states of the system such that the Hamiltonian of the system can be expressed as:

$$
H=-\left(\mu_{1}+\mu_{2}\right) B+\alpha \mu_{1} \mu_{2},
$$

where $\alpha>0$ and $B>0$ are given.
(a) Enumerate the four possible micro-states for the system.
(b) Show that the partition function can be expressed as $Z(B, \alpha, T)=2 e^{-\alpha / k T} \cosh (2 B / k T)+$ $2 e^{\alpha / k T}$.
(c) Determine the phase average $\overline{\mu_{1} \mu_{2}}$ as a function of non-dimensional temperature $(\theta=$ $k T / 2 B)$ and the ratio $\alpha / B$.
i. What happens in the limit of large $\theta$ ?
ii. What happens in the limit of $\theta \rightarrow 0$ ? List all the possible cases.
iii. Make a plot of $\overline{\mu_{1} \mu_{2}}$ versus $\theta$ and describe what is happening in the system as it cools.

