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1. Discrete System: Consider a system which consists of 3 coins. Each coin has two sides
Heads (H) and Tails (T), which are assigned values of 2 and 1, respectively. Let the 3 coins
be tossed and let us consider the following outcome : H, T, T (2, 1, 1). We denote this outcome
as the microstate of the system. A macrostate of the system is defined as the sum of the
values of all the faces in the outcome. For example, the macrostate of the system for the
outcome H, T, T is 2+1+1 = 4.

(a) What are all the possible microstates and macrostates of the system?

(b) If it is known that the macrostate of the system is 5, what are the accessible(admissible)
microstates of the system? Remark: We denote this set of accessible microstates as the
(statistical) ensemble corresponding to the macrostate of 5. In class, we have mentioned
that an ensemble is a collection of replicas of the same system, where ‘same’ refers
to certain (macroscopic) constraints. From this exercise, it should be noted that the
systems in a given ensemble may be in different microstates but correspond to the same
macrostate.

2. Alternate Microcanonical Ensemble: Our working definition of the microcanonical en-
semble is:

ρ(y) =

{ 1
V (E+∆)−V (E) E ≤ H(y) ≤ E + ∆

0 otherwise .

(a) Argue that this can be expressed as:

ρ(y) =
Θ(E + ∆−H(y))−Θ(E −H(y))

V (E + ∆)− V (E)
,

where Θ is the Heaviside step function.

(b) Show that this implies that one also has

ρ(y) =
δ(E −H(y))

Ω(E)
,

where δ is the Dirac-delta function.

3. Continuous System: Consider a one-particle system moving in 1-dimension with the fol-
lowing Hamiltonian

H(x, p) =
p2

2m
+

1

2
x2 , (1)

where x and p denote the position and momentum of the particle, respectively. Draw the sta-
tistical ensemble corresponding to the macrostate of H = 2 in the phase space; i.e. accurately
sketch the subspace of Γ, the x-p plane occupied by this ensemble.
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4. The logarithm of the phase space density is known as the index of probability, η, where

η = log(ρ) .

Consider a micro-canonical ensemble and show that the phase space average of −η is simply
−η = log(Ω(E)∆). Thus the expectation value of the negative of the index of probability
is the logarithm of the accessible phase space volume. This then is a (logarithmic) measure
of how much variability in state (uncertainty) exists in the micro-canonical ensemble. As we
shall see later, −η is intimately related to the concept of entropy.

(See equation sheet on bSpace for some handy formulae for the following prob-
lems.)

5. Consider a point mass m with position r = xex + yey + zez, where its height above the
ground is z = r · ez. The total energy of this particle is given by

H(r,p) =
p · p
2m

+mgz , (2)

where p is the momentum vector and g is the acceleration due to gravity. Implicit, in this
expression is the constraint that z ≥ 0 and that x, y ∈ (−L/2, L/2).
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Assume a canonical phase-space distribution for this particle given by

ρ(r,p) = C exp(− H

kBT
) , (3)

where kB = 1.3806504× 10−23 J/K is Boltzmann constant, T is the absolution temperature
of the surroundings (the heat bath) and C is the normalization constant.

(a) Calculate the mean height of the particle above the ground? Express it in terms of m,
g, kB and T .
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(b) Assume the particle is a Helium atom with mass 4.0026/NA g and the surrounding
temperature is 300 K. What is the mean height? [Note: NA = 6.022×1023 is Avagadro’s
number.]

(c) Assume that the particle has mass 10 kg and the surrounding temperature is 300 K.
What is the mean height now? Does this correlate with your physical intuition?

6. (Externally controlled system: Canonical) Consider a system described by a Hamilto-
nian H(q,p;A(t)), which is at equilibirum with a heat bath with parameter θ and thus has
phase space distribution ρ(q,p;A(t)) = exp[−H(q,p;A(t))/θ]/

∫
Γ exp[−H(q,p;A(t))/θ] dqdp

at all times t. Noting that U =
∫

ΓHρdqdp and that U̇ = Ẇ +Q̇, show that in general during
a process where A changes there will be an exchange of heat between the system and the
heat bath at a rate:

Q̇ =
1

θ

[
∂H

∂A
H − ∂H

∂A
H

]
Ȧ .

Since in general the mean of a product of two functions is not equal to the product of the
means, there will will always be an exchange of heat in this setting.

7. Consider a system (discrete) which only takes on three states {1, 2, 3} with energies ε = H(1),
2ε = H(2), and 4ε = H(3). The system is in equilibrium with a heat bath with parameter
θ = 2ε.

(a) Compute the internal energy and entropy of the system.

(b) Suppose one performs “mechanical” work on the system such that H(2) = 3ε but H(1)
and H(3) do not change. Compute the change in internal energy and entropy of the
system.

(c) Suppose instead of mechanical work, heat work is performed on the system such that θ
changes to 3ε. Compute the change in internal energy and entropy of the system.

(d) Suppose both the mechanical and heat work are performed on the system. Compute the
change in internal energy and entropy of the system.
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