HW 6: Due November 5

1. Consider a chain in 3D with fixed bond lengths $\|\boldsymbol{a}_i\| = a$, free dihedral angles ϕ_i , and fixed bond supplements $\theta_i = \theta$. Show that in the long chain limit, $n \to \infty$, that

$$C_{\infty} = \frac{1 + \cos(\theta)}{1 - \cos(\theta)}.$$

Evaluate your result for terahedrally bonded chains, $\cos(\theta) = 1/3$, and observe that the value is well below the experimentally observed range of 5 to 10. Note; $C_{\infty} \equiv \lim_{n \to \infty} \langle \mathbf{R} \cdot \mathbf{R} \rangle / na^2$.

- 2. Consider a chain in 3D with identical independent bonds where the bond lengths are fixed at a, the bond supplements are fixed at θ , and the dihedral angles are restricted by a potential of the form $V(\phi) = \frac{V_o}{2}(1 \cos(3\phi)) + V_o(\phi/\pi)^2$, where the function is defined over $\phi \in [-\pi, \pi]$ and is 2π periodic.
 - (a) Show that

$$C_{\infty} = \left(\frac{1 + \cos(\theta)}{1 - \cos(\theta)}\right) \left(\frac{1 + \langle \cos(\phi) \rangle}{1 - \langle \cos(\phi) \rangle}\right)$$

- (b) Assume now that $V_o = 2$ kcal/mol and compute C_{∞} . Are you in within the experimental range (assume $\cos(\theta) = 1/3$).
- (c) Assume that the dihedral angles are restricted to the discrete values defined by the three minima of $V(\cdot)$; this is called the rotational isomeric state approximation. Recompute C_{∞} . Is the approximation reasonable in that does it reasonably approximate the value you obtained when you utilized the full potential?¹
- 3. Consider a freely jointed chain in 3D in a strain-ensemble with fixed bond lengths *a*. Plot $\langle f \rangle a/kT$ versus $\|\mathbf{R}\|/na$ for chains with $n \in \{2, 3, 5, 10\}$ links. On the same plot, include the $n \to \infty$ (Gaussian limit) case as well as the stress-ensemble (inverse Langevin) case.

¹The next level of sophistication in chain models is to acknowledge that bonds are not independent of each other and to include nearest neighbor interactions along the chain.