HW 2: Due September 17

Understanding ensembles

1. Discrete System: Consider a system which consists of 3 coins. Each coin has two sides Heads (H) and Tails (T), which are assigned values of 2 and 1 respectively. Let the 3 coins be tossed and let us consider the following outcome : $H, T, T(2,1,1)$. We denote this outcome as the microstate of the system. A macrostate of the system is defined as the sum of the values of all the faces in the outcome. For example, the macrostate of the system for the outcome H, T, T is $2+1+1=4$.
(a) What are all the possible microstates and macrostates of the system?
(b) If it is known that the macrostate of the system is 5 , what are the accessible(admissible) microstates of the system? Remark: We denote this set of accessible microstates as the (statistical) ensemble corresponding to the macrostate of 5 . In class, we have mentioned that an ensemble is a collection of replicas of the same system, where 'same' refers to certain (macroscopic) constraints. From this exercise, it should be noted that the systems in a given ensemble may be in different microstates but correspond to the same macrostate.
2. Continuous System: Consider a one-particle system moving in 1-dimension with the following Hamiltonian

$$
\begin{equation*}
H(x, p)=\frac{p^{2}}{2 m}+\frac{1}{2} x^{2}, \tag{1}
\end{equation*}
$$

where x and p denote the position and momentum of the particle, respectively. Draw the statistical ensemble corresponding to the macrostate of $\mathrm{H}=2$ in the phase space; i.e. accurately sketch the subspace of Γ, the $x-p$ plane occupied by this ensemble.

Liouville's Theorem and Statistical Equilibrium

3. Consider a N-particle system where each particle moves in 1-dimension. The particles are connected with springs in a periodic fashion such that the system's Hamiltonian is given by:

$$
\begin{equation*}
H\left(x_{1}, \cdots, x_{N}, p_{1}, \cdots, p_{N}\right)=\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m_{i}}+\sum_{i=1}^{N-1} \frac{1}{2} K\left(x_{i}-x_{i+1}\right)^{2}+\frac{1}{2} K\left(x_{1}-x_{N}\right)^{2}, \tag{2}
\end{equation*}
$$

where m_{i} is the mass of atom i and k is a constant.
(a) What are the equations of motion for this system?
(b) Consider the following phase-space distribution

$$
\begin{equation*}
\rho(\mathbf{y}, t)=\frac{e^{-\frac{1}{k_{B} T}\left(\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m_{i}}+\sum_{i=1}^{N-1} \frac{1}{2} K\left(x_{i}-x_{i+1}\right)^{2}+\frac{1}{2} K\left(x_{1}-x_{N}\right)^{2}\right)}}{\int_{\Gamma} e^{-\frac{1}{k_{B} T}\left(\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m_{i}}+\sum_{i=1}^{N-1} \frac{1}{2} K\left(x_{i}-x_{i+1}\right)^{2}+\frac{1}{2} K\left(x_{1}-x_{N}\right)^{2}\right)} \mathrm{d} \mathbf{y}} \tag{3}
\end{equation*}
$$

where $\mathbf{y}=\left(x_{1}, \cdots, x_{n}, p_{1}, \cdots, p_{N}\right)$ is a point in phase-space. Here, k_{B} and T are constants (Boltzmann's constant and temperature, respectively).

Is the choice of phase-space distribution given by equation (3) valid? If it is valid, is the system in statistical-equilibrium?

Liouville' Theorem for Non-Hamiltonian Systems

4. In class, we have derived the local form of Liouville's theorem for Hamiltonian systems. Derive the local form of the Liouville' theorem for non-Hamiltonian systems, i.e., for systems whose equations of motion are not derivable from a prescribed Hamiltonian. Express the local form in terms of the phase-space distribution function ρ and the phase-space variables \mathbf{y} and $\dot{\mathbf{y}}$. (Hint: Start from the same global form as used in the derivation in class, but look where you specialized it for Hamiltonian systems).
Using this new local form, specialize the theorem to the case of Hamiltonian systems and express it in terms of the Hamiltonian H, distribution function ρ, and phase-space variables y. You should recover the local form of Liouville's theorem that was derived in class for a Hamiltonian system.
