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Understanding ensembles

1. Discrete System: Consider a system which consists of 3 coins. Each coin has two sides
Heads (H) and Tails (T), which are assigned values of 2 and 1 respectively. Let the 3 coins be
tossed and let us consider the following outcome : H, T, T (2, 1, 1). We denote this outcome
as the microstate of the system. A macrostate of the system is defined as the sum of the
values of all the faces in the outcome. For example, the macrostate of the system for the
outcome H, T, T is 2+1+1 = 4.

(a) What are all the possible microstates and macrostates of the system?

(b) If it is known that the macrostate of the system is 5, what are the accessible(admissible)
microstates of the system? Remark: We denote this set of accessible microstates as the
(statistical) ensemble corresponding to the macrostate of 5. In class, we have mentioned
that an ensemble is a collection of replicas of the same system, where ‘same’ refers
to certain (macroscopic) constraints. From this exercise, it should be noted that the
systems in a given ensemble may be in different microstates but correspond to the same
macrostate.

2. Continuous System: Consider a one-particle system moving in 1-dimension with the fol-
lowing Hamiltonian

H(x, p) =
p2

2m
+

1
2
x2 , (1)

where x and p denote the position and momentum of the particle, respectively. Draw the sta-
tistical ensemble corresponding to the macrostate of H = 2 in the phase space; i.e. accurately
sketch the subspace of Γ, the x-p plane occupied by this ensemble.

Liouville’s Theorem and Statistical Equilibrium

3. Consider a N-particle system where each particle moves in 1-dimension. The particles are
connected with springs in a periodic fashion such that the system’s Hamiltonian is given by:

H(x1, · · · , xN , p1, · · · , pN ) =
N∑

i=1

p2
i

2mi
+

N−1∑
i=1

1
2
K(xi − xi+1)2 +

1
2
K(x1 − xN )2 , (2)

where mi is the mass of atom i and k is a constant.

(a) What are the equations of motion for this system?
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(b) Consider the following phase-space distribution

ρ(y, t) =
e

−
1

kBT

( N∑
i=1

p2
i

2mi
+

N−1∑
i=1

1
2
K(xi − xi+1)2 +

1
2
K(x1 − xN )2

)

∫
Γ

e

−
1

kBT

( N∑
i=1

p2
i

2mi
+

N−1∑
i=1

1
2
K(xi − xi+1)2 +

1
2
K(x1 − xN )2

)
dy

(3)

where y = (x1, · · · , xn, p1, · · · , pN ) is a point in phase-space. Here, kB and T are con-
stants (Boltzmann’s constant and temperature, respectively).

Is the choice of phase-space distribution given by equation (3) valid? If it is valid, is the
system in statistical-equilibrium?

Liouville’ Theorem for Non-Hamiltonian Systems

4. In class, we have derived the local form of Liouville’s theorem for Hamiltonian systems. Derive
the local form of the Liouville’ theorem for non-Hamiltonian systems, i.e., for systems whose
equations of motion are not derivable from a prescribed Hamiltonian. Express the local form
in terms of the phase-space distribution function ρ and the phase-space variables y and ẏ.
(Hint: Start from the same global form as used in the derivation in class, but look where you
specialized it for Hamiltonian systems).

Using this new local form, specialize the theorem to the case of Hamiltonian systems and
express it in terms of the Hamiltonian H, distribution function ρ, and phase-space variables
y. You should recover the local form of Liouville’s theorem that was derived in class for a
Hamiltonian system.
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