HW 1: Due September 10

Some thinking exercises

1. Consider a fair coin. What is the probability that one will obtain the sequence $H H H$? How many possible 3 flip sequences are there?
2. Suppose a coin is not fair with a probability of a head of p and a tail of q, with $p+q=1$. If the coin is flipped N times, what is the probability of getting $N / 4$ or more heads? [Hint: Binomial distribution].
3. The probability that a typesetter will make a mistake on a single page in a book can be modeled using a Poisson distribution (equivalent to the binomial distribution in the rare event case). In this case, one can write $p(n)=\frac{\lambda^{n}}{n!} \exp [-\lambda]$ for the probability the typesetter makes n errors on a single page, where λ is a model parameter. Assuming that $\lambda=1$, what is the probability that a given page has no errors? What is the probability that a given page contains at least 3 errors.
4. (Bayes' Theorem) Bayes' theorem tells us that the conditional probability of an event B given an event A is

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)} .
$$

Suppose AMD manufactures computer chips in two plants. Plant 1 makes 60% of its chips and Plant 240% of its chips. If 25% of the chips from Plant 1 are defective and 10% of the chips from Plant 2 are defective, what is the probability that a randomly selected defective chip came from Plant 1? [Hint: Apply Bayes' theorem where event B is the event Plant 1 and event A is the event that you have a defective chip. You should also exploit the fact that $P(A)=\sum_{i}^{N} P\left(A \mid B_{i}\right) P\left(B_{i}\right)$ where the union $\cup_{i=1}^{N} B_{i}=\Omega$, where Ω is the set of all possible events, and $B_{i} \cap B_{j}=\emptyset$ for $i \neq j$]. It also possible to solve this problem by constructing a probability event tree and then making a direct counting of possibilities.

Statistical mechanics exercises

5. Consider two masses, m_{1}, m_{2}, that are connected by a linear spring with spring constant k and reference length l that slide on a frictionless table. Assuming the motion only occurs in one-dimension, construct the Hamiltonian for this system, $H\left(x_{1}, x_{2}, p_{1}, p_{2}\right)$, and Hamilton's form of the equations of motion.
6. Given a phase space distribution $\rho(\boldsymbol{q}, \boldsymbol{p}, t): \Gamma \rightarrow \mathbb{R}$ of the form $\rho=\hat{\rho}(H(\boldsymbol{q}, \boldsymbol{p}, t))$, show that this represents a distribution which is always in statistical equilibrium; i.e., show $\partial \rho / \partial t=0$.
