The Symmetric Identity: $\mathbb{I}^{\text {sym }} \rightarrow \frac{1}{2}\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right)$
The derivative of a second order tensor with itself is the fourth order identity tensor \mathbb{I}, in the same way as the second order identity $\mathbf{1}=\partial \boldsymbol{x} / \partial \boldsymbol{x}$ when \boldsymbol{x} is a vector. In components $\delta_{i j}=\partial x_{i} / \partial x_{j}$. For the case of interest, in components we have for a tensor \boldsymbol{A} with components $A_{i j}$

$$
\begin{equation*}
\mathbb{I}_{i j k l}=\frac{\partial A_{i j}}{\partial A_{k l}}=\delta_{i k} \delta_{j l} \tag{1}
\end{equation*}
$$

i.e. if $i=k$ and $j=l$ then the result is unity and if one of the equalities is violated, then the result is zero. So, for example, $\partial A_{12} / \partial A_{12}=1$ and $\partial A_{12} / \partial A_{21}=0$ etc. This is as we expect if the components are independent.

When the tensor is symmetric, $\boldsymbol{A} \in \mathbb{S}$ (the set of symmetric tensors), then we come to the result that the identity is no longer given by (1); note the components of a symmetric second order tensor are not all independent. Rather it is given component-wise by the expression in the header. This then returns the somewhat non-intuitive result that $\partial A_{12} / \partial A_{12}=\mathbb{I}_{1212}^{\text {sym }}=1 / 2($ not unity!) even though $\partial A_{11} / \partial A_{11}=\mathbb{I}_{1111}^{\text {sym }}=1$. How can this be?

Consider a scalar-valued function on symmetric tensors, $f: \mathbb{S} \rightarrow \mathbb{R}$. Its directional derivative ${ }^{1}$ is a linear mapping $D f: \mathbb{S} \rightarrow \mathbb{R}$. As such we can represent it by a tensor, which we choose to call \boldsymbol{B} :

$$
\begin{equation*}
D f[\boldsymbol{C}] \equiv \boldsymbol{B}: \boldsymbol{C} \tag{2}
\end{equation*}
$$

The tensor \boldsymbol{B} characterizing the derivative of $f(\cdot)$ in the (symmetric) direction \boldsymbol{C} is non-unique since one can add an arbitrary skew-symmetric tensor to \boldsymbol{B} without changing the result. The symmetric part of \boldsymbol{B}, viz. $\frac{1}{2}\left(\boldsymbol{B}+\boldsymbol{B}^{T}\right)$, is however unique. This is the tensor which we choose to use to represent the derivative $D f$. We do this for two reasons: (1) it is unique, thus there is no ambiguity, and (2) it will always produce the correct result for the rate of change of $f(\cdot)$ in a symmetric direction. Note it only makes sense to discuss rates of change of $f(\cdot)$ in symmetric directions, since $f(\cdot)$ is only defined over the space of symmetric tensors.

[^0]Let us now apply this result to the component extraction function $f(\boldsymbol{A})=$ $\left(\boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}\right): \boldsymbol{A}=A_{i j}$. To compute the derivative of $f(\cdot)$ we apply the directional derivative formula

$$
\begin{equation*}
\frac{d}{d \alpha}\left(\boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}\right):\left.(\boldsymbol{A}+\alpha \boldsymbol{H})\right|_{\alpha=0}=D f[\boldsymbol{H}] \tag{3}
\end{equation*}
$$

where $\boldsymbol{H} \in \mathbb{S}$. Taking the derivative with respect to α, setting α to zero, leads to:

$$
\begin{equation*}
\left(\boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}\right): \boldsymbol{H}=D f[\boldsymbol{H}], \tag{4}
\end{equation*}
$$

which allows us to identify an expression for \boldsymbol{B} as $\boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}$. The unique part of \boldsymbol{B} which provides the derivative information is the symmetric part; viz. $\frac{1}{2}\left(\boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}+\boldsymbol{e}_{j} \otimes \boldsymbol{e}_{i}\right)$. This expression gives us the derivative $\partial A_{i j} / \partial \boldsymbol{A}$. If we now compute its components we get

$$
\begin{equation*}
\frac{\partial A_{i j}}{\partial A_{k l}}=\frac{\partial A_{i j}}{\partial \boldsymbol{A}}:\left(\boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l}\right)=\frac{1}{2}\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) . \tag{5}
\end{equation*}
$$

Thus we arrive at the desired expression - an expression for the fourth order identity tensor over the space of symmetric tensors. Observe that this expression yields the results $\partial A_{11} / \partial A_{11}=\mathbb{I}_{1111}^{\text {sym }}=1$, and the non-intuitive (but correct) results $\partial A_{12} / \partial A_{12}=\mathbb{I}_{1212}^{\text {sym }}=1 / 2$, as well as $\partial A_{12} / \partial A_{21}=\mathbb{I}_{1221}^{\text {sym }}=1 / 2$.

[^0]: ${ }^{1}$ Assuming it exists.

