UNIVERSITY OF CALIFORNIA BERKELEY	Structural Engineering,
Department of Civil Engineering	Mechanics and Materials
Fall 2021	Professor: S. Govindjee

The Symmetric Identity: $\mathbb{I}^{\text{sym}} \to \frac{1}{2}(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})$

The derivative of a second order tensor with itself is the fourth order identity tensor I, in the same way as the second order identity $\mathbf{1} = \partial \boldsymbol{x} / \partial \boldsymbol{x}$ when \boldsymbol{x} is a vector. In components $\delta_{ij} = \partial x_i / \partial x_j$. For the case of interest, in components we have for a tensor \boldsymbol{A} with components A_{ij}

$$\mathbb{I}_{ijkl} = \frac{\partial A_{ij}}{\partial A_{kl}} = \delta_{ik} \delta_{jl} \,; \tag{1}$$

i.e. if i = k and j = l then the result is unity and if one of the equalities is violated, then the result is zero. So, for example, $\partial A_{12}/\partial A_{12} = 1$ and $\partial A_{12}/\partial A_{21} = 0$ etc. This is as we expect if the components are independent.

When the tensor is symmetric, $\mathbf{A} \in \mathbb{S}$ (the set of symmetric tensors), then we come to the result that the identity is no longer given by (1); note the components of a symmetric second order tensor are not all independent. Rather it is given component-wise by the expression in the header. This then returns the somewhat non-intuitive result that $\partial A_{12}/\partial A_{12} = \mathbb{I}_{1212}^{\text{sym}} = 1/2$ (not unity!) even though $\partial A_{11}/\partial A_{11} = \mathbb{I}_{1111}^{\text{sym}} = 1$. How can this be?

Consider a scalar-valued function on symmetric tensors, $f : \mathbb{S} \to \mathbb{R}$. Its directional derivative¹ is a linear mapping $Df : \mathbb{S} \to \mathbb{R}$. As such we can represent it by a tensor, which we choose to call **B**:

$$Df[C] \equiv B : C . \tag{2}$$

The tensor \boldsymbol{B} characterizing the derivative of $f(\cdot)$ in the (symmetric) direction \boldsymbol{C} is non-unique since one can add an arbitrary skew-symmetric tensor to \boldsymbol{B} without changing the result. The symmetric part of \boldsymbol{B} , viz. $\frac{1}{2}(\boldsymbol{B}+\boldsymbol{B}^T)$, is however unique. This is the tensor which we *choose* to use to represent the derivative Df. We do this for two reasons: (1) it is unique, thus there is no ambiguity, and (2) it will always produce the correct result for the rate of change of $f(\cdot)$ in a symmetric direction. Note it only makes sense to discuss rates of change of $f(\cdot)$ in symmetric directions, since $f(\cdot)$ is only defined over the space of symmetric tensors.

¹Assuming it exists.

Let us now apply this result to the component extraction function $f(\mathbf{A}) = (\mathbf{e}_i \otimes \mathbf{e}_j) : \mathbf{A} = A_{ij}$. To compute the derivative of $f(\cdot)$ we apply the directional derivative formula

$$\frac{d}{d\alpha}(\boldsymbol{e}_i \otimes \boldsymbol{e}_j) : (\boldsymbol{A} + \alpha \boldsymbol{H}) \Big|_{\alpha=0} = Df[\boldsymbol{H}], \qquad (3)$$

where $H \in S$. Taking the derivative with respect to α , setting α to zero, leads to:

$$(\boldsymbol{e}_i \otimes \boldsymbol{e}_j) : \boldsymbol{H} = Df[\boldsymbol{H}],$$
 (4)

which allows us to identify an expression for \boldsymbol{B} as $\boldsymbol{e}_i \otimes \boldsymbol{e}_j$. The unique part of \boldsymbol{B} which provides the derivative information is the symmetric part; viz. $\frac{1}{2}(\boldsymbol{e}_i \otimes \boldsymbol{e}_j + \boldsymbol{e}_j \otimes \boldsymbol{e}_i)$. This expression gives us the derivative $\partial A_{ij}/\partial \boldsymbol{A}$. If we now compute its components we get

$$\frac{\partial A_{ij}}{\partial A_{kl}} = \frac{\partial A_{ij}}{\partial \boldsymbol{A}} : (\boldsymbol{e}_k \otimes \boldsymbol{e}_l) = \frac{1}{2} (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) .$$
(5)

Thus we arrive at the desired expression – an expression for the fourth order identity tensor over the space of symmetric tensors. Observe that this expression yields the results $\partial A_{11}/\partial A_{11} = \mathbb{I}_{1111}^{\text{sym}} = 1$, and the non-intuitive (but correct) results $\partial A_{12}/\partial A_{12} = \mathbb{I}_{1212}^{\text{sym}} = 1/2$, as well as $\partial A_{12}/\partial A_{21} = \mathbb{I}_{1221}^{\text{sym}} = 1/2$.