UNIVERSITY OF CALIFORNIA BERKELEY	Structural Engineering,
Department of Civil Engineering	Mechanics and Materials
Fall 2003	Professor: S. Govindjee

Steady State Response of the SLS

Let $\varepsilon(t) = \varepsilon_o \sin(\omega t)$, then for the standard linear solid (SLS)

$$\sigma(t) = \int_{-\infty}^{t} [E_{\infty} + (E_o - E_{\infty}) \exp(-(t - s)/\tau)] \varepsilon_o \omega \cos(\omega s) \, ds \tag{1}$$

$$= \varepsilon_o E_\infty \sin(\omega t) + \varepsilon_o \omega (E_o - E_\infty) \exp(-t/\tau) \int_{-\infty}^t \exp(s/\tau) \cos(\omega s) \, ds \tag{2}$$

$$= \varepsilon_o E_{\infty} \sin(\omega t) + \varepsilon_o \omega (E_o - E_{\infty}) \exp(-t/\tau) \left[\frac{\exp(s/\tau)}{1/\tau^2 + \omega^2} \left[\frac{1}{\tau} \cos(\omega s) + \omega \sin(\omega s) \right] \right]_{-\infty}^{t} (3)$$

$$= \varepsilon_o E_{\infty} \sin(\omega t) + \frac{\varepsilon_o \omega (E_o - E_{\infty})}{1/\tau^2 + \omega^2} \left[\frac{1}{\tau} \cos(\omega t) + \omega \sin(\omega t) \right]$$
(4)

$$= \varepsilon_o \underbrace{\left[E_{\infty} + \frac{\omega^2 \tau^2}{1 + \omega^2 \tau^2} (E_o - E_{\infty})\right]}_{E'(\omega)} \sin(\omega t) + \varepsilon_o \underbrace{\left(E_o - E_{\infty}\right) \frac{\omega \tau}{1 + \omega^2 \tau^2}}_{E''(\omega)} \cos(\omega t) \tag{5}$$

The storage modulus, $E'(\omega)$, gives the amount of "stiffness in phase with the applied loading" and $E''(\omega)$ gives the amount of "stiffness 90 degrees out of phase with the loading". Note the in the limit of $\omega >> \tau$, $E'' \to 0$ and $E' \to E_o$. Whereas in the limit $\omega \ll \tau$, $E'' \to 0$ and $E' \to E_\infty$. Out of phase, i.e. viscous behavior, is seen for frequencies comparable to $1/\tau$. One common measure of viscous dissipation is the so-called loss angle, δ , defined through

$$\tan(\delta) = E''/E' \tag{6}$$