Definitions of Some Useful Spaces

1 Real Vector Space

A real vector space is a set V and an operation $+: V \times V \rightarrow V$ such that

1. $\boldsymbol{a}+\boldsymbol{b}=\boldsymbol{b}+\boldsymbol{a} \quad \forall \boldsymbol{a}, \boldsymbol{b} \in V$
2. $(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c}=\boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c}) \quad \forall \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in V$
3. $\exists \mathbf{0} \in V \quad$ such that $\boldsymbol{a}+\mathbf{0}=\boldsymbol{a} \quad \forall \boldsymbol{a} \in V$
4. $\exists-\boldsymbol{a} \in V \quad$ such that $\boldsymbol{a}+(-\boldsymbol{a})=\mathbf{0} \quad \forall \boldsymbol{a} \in V$

Further for any $\alpha \in \mathbb{R}$ and any vector $\boldsymbol{a} \in V$ their product $\alpha \boldsymbol{a}$ is in V and the following properties hold:

1. $1 \boldsymbol{a}=\boldsymbol{a} \quad \forall \boldsymbol{a} \in V$
2. $\alpha(\beta \boldsymbol{a})=(\alpha \beta) \boldsymbol{a} \quad \forall \boldsymbol{a} \in V$ and $\forall \alpha, \beta \in \mathbb{R}$
3. $\alpha(\boldsymbol{a}+\boldsymbol{b})=\alpha \boldsymbol{a}+\alpha \boldsymbol{b} \quad$ and $\quad(\alpha+\beta) \boldsymbol{a}=\alpha \boldsymbol{a}+\beta \boldsymbol{a} \quad \forall \boldsymbol{a} \in V$ and $\forall \alpha, \beta \in \mathbb{R}$

The symbol \forall is read as "forall", the symbol \exists is read as "there exists", and the symbol \in is read as "in". The notation $+: V \times V \rightarrow V$ is read as saying the symbol + is a mapping from V and V into V. \mathbb{R} denotes the space of real numbers.

2 Norm vector space

A norm vector space is a vector space V with a norm $\|\cdot\|: V \rightarrow \mathbb{R}$ with the following properties:

1. $\|\boldsymbol{a}\| \geq 0 \quad \forall \boldsymbol{a} \in V$ and is zero if and only if (iff) $\boldsymbol{a}=\mathbf{0}$
2. $\|\alpha \boldsymbol{a}\|=|\alpha|\|\boldsymbol{a}\| \quad \forall \alpha \in \mathbb{R}$ and $\forall \boldsymbol{a} \in V$
3. $\|\boldsymbol{a}+\boldsymbol{b}\| \leq\|\boldsymbol{a}\|+\|\boldsymbol{b}\| \quad \forall \boldsymbol{a}, \boldsymbol{b} \in V$

3 Inner Product Space

An inner product space is a vector space V with an inner product $\cdot: V \times V \rightarrow$ \mathbb{R} such that

1. $(\boldsymbol{a}+\boldsymbol{b}) \cdot \boldsymbol{c}=\boldsymbol{a} \cdot \boldsymbol{c}+\boldsymbol{b} \cdot \boldsymbol{c} \quad \forall \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in V$
2. $(\alpha \boldsymbol{a}) \cdot \boldsymbol{b}=\alpha(\boldsymbol{a} \cdot \boldsymbol{b}) \quad \forall \alpha \in \mathbb{R}$ and $\forall \boldsymbol{a}, \boldsymbol{b} \in V$
3. $\boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{b} \cdot \boldsymbol{a} \quad \forall \boldsymbol{a}, \boldsymbol{b} \in V$
4. $\boldsymbol{a} \cdot \boldsymbol{a} \geq 0 \quad \forall \boldsymbol{a} \in V$ and is zero iff $\boldsymbol{a}=\mathbf{0}$

Note that one can make an inner product space be a norm space by defining the "natural norm" $\|\boldsymbol{a}\|=\sqrt{\boldsymbol{a} \cdot \boldsymbol{a}}$.

4 Euclidean Vector Space

An Euclidean vector space is a vector space V with a (real valued) inner product, its natural norm, and a vector product $\wedge: V \times V \rightarrow V$ such that the following properties hold:

1. $\boldsymbol{a} \wedge \boldsymbol{b}=-\boldsymbol{b} \wedge \boldsymbol{a} \quad \forall \boldsymbol{a}, \boldsymbol{b} \in V$
2. $(\alpha \boldsymbol{a}+\beta \boldsymbol{b}) \wedge \boldsymbol{c}=\alpha \boldsymbol{a} \wedge \boldsymbol{c}+\beta \boldsymbol{b} \wedge \boldsymbol{c} \quad \forall \alpha, \beta \in \mathbb{R}$ and $\forall \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in V$
3. $\boldsymbol{a} \cdot(\boldsymbol{a} \wedge \boldsymbol{b})=0 \quad \forall \boldsymbol{a}, \boldsymbol{b} \in V$
4. $(\boldsymbol{a} \wedge \boldsymbol{b}) \cdot(\boldsymbol{a} \wedge \boldsymbol{b})=(\boldsymbol{a} \cdot \boldsymbol{a})(\boldsymbol{b} \cdot \boldsymbol{b})-(\boldsymbol{a} \cdot \boldsymbol{b})^{2} \quad \forall \boldsymbol{a}, \boldsymbol{b} \in V$

The vector product we are most familiar with is the standard cross-product which is often denoted by the alternate symbol \times.

