UNIVERSITY OF CALIFORNIA BERKELEY	Structural Engineering,
Department of Civil Engineering	Mechanics and Materials
Fall 2003	Professor: S. Govindjee

Definitions of Some Useful Spaces

1 Real Vector Space

A real vector space is a set V and an operation $+ : V \times V \rightarrow V$ such that

- 1. $\boldsymbol{a} + \boldsymbol{b} = \boldsymbol{b} + \boldsymbol{a} \qquad \forall \boldsymbol{a}, \boldsymbol{b} \in V$
- 2. $(\boldsymbol{a} + \boldsymbol{b}) + \boldsymbol{c} = \boldsymbol{a} + (\boldsymbol{b} + \boldsymbol{c}) \quad \forall \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in V$
- 3. $\exists \mathbf{0} \in V$ such that $\mathbf{a} + \mathbf{0} = \mathbf{a} \quad \forall \mathbf{a} \in V$
- 4. $\exists -\boldsymbol{a} \in V$ such that $\boldsymbol{a} + (-\boldsymbol{a}) = \boldsymbol{0} \quad \forall \boldsymbol{a} \in V$

Further for any $\alpha \in \mathbb{R}$ and any vector $\boldsymbol{a} \in V$ their product $\alpha \boldsymbol{a}$ is in V and the following properties hold:

- 1. $1\boldsymbol{a} = \boldsymbol{a} \qquad \forall \boldsymbol{a} \in V$
- 2. $\alpha(\beta \boldsymbol{a}) = (\alpha \beta) \boldsymbol{a} \qquad \forall \boldsymbol{a} \in V \text{ and } \forall \alpha, \beta \in \mathbb{R}$
- 3. $\alpha(\boldsymbol{a} + \boldsymbol{b}) = \alpha \boldsymbol{a} + \alpha \boldsymbol{b}$ and $(\alpha + \beta)\boldsymbol{a} = \alpha \boldsymbol{a} + \beta \boldsymbol{a}$ $\forall \boldsymbol{a} \in V$ and $\forall \alpha, \beta \in \mathbb{R}$

The symbol \forall is read as "forall", the symbol \exists is read as "there exists", and the symbol \in is read as "in". The notation $+ : V \times V \to V$ is read as saying the symbol + is a mapping from V and V into V. \mathbb{R} denotes the space of real numbers.

2 Norm vector space

A norm vector space is a vector space V with a norm $\|\cdot\|: V \to \mathbb{R}$ with the following properties:

- 1. $\|\boldsymbol{a}\| \ge 0 \quad \forall \boldsymbol{a} \in V \text{ and is zero if and only if } (iff) \boldsymbol{a} = \boldsymbol{0}$
- 2. $\|\alpha \boldsymbol{a}\| = |\alpha| \|\boldsymbol{a}\| \quad \forall \alpha \in \mathbb{R} \text{ and } \forall \boldsymbol{a} \in V$
- 3. $\|\boldsymbol{a} + \boldsymbol{b}\| \le \|\boldsymbol{a}\| + \|\boldsymbol{b}\| \quad \forall \boldsymbol{a}, \boldsymbol{b} \in V$

3 Inner Product Space

An inner product space is a vector space V with an inner product $\cdot:V\times V\to\mathbb{R}$ such that

- 1. $(\boldsymbol{a} + \boldsymbol{b}) \cdot \boldsymbol{c} = \boldsymbol{a} \cdot \boldsymbol{c} + \boldsymbol{b} \cdot \boldsymbol{c} \qquad \forall \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in V$
- 2. $(\alpha \boldsymbol{a}) \cdot \boldsymbol{b} = \alpha(\boldsymbol{a} \cdot \boldsymbol{b}) \qquad \forall \alpha \in \mathbb{R} \text{ and } \forall \boldsymbol{a}, \boldsymbol{b} \in V$
- 3. $\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{b} \cdot \boldsymbol{a} \qquad \forall \boldsymbol{a}, \boldsymbol{b} \in V$
- 4. $\boldsymbol{a} \cdot \boldsymbol{a} \geq 0 \quad \forall \boldsymbol{a} \in V \text{ and is zero } iff \ \boldsymbol{a} = \boldsymbol{0}$

Note that one can make an inner product space be a norm space by defining the "natural norm" $\|\boldsymbol{a}\| = \sqrt{\boldsymbol{a} \cdot \boldsymbol{a}}$.

4 Euclidean Vector Space

An Euclidean vector space is a vector space V with a (real valued) inner product, its natural norm, and a vector product $\wedge : V \times V \to V$ such that the following properties hold:

1. $\boldsymbol{a} \wedge \boldsymbol{b} = -\boldsymbol{b} \wedge \boldsymbol{a}$ $\forall \boldsymbol{a}, \boldsymbol{b} \in V$ 2. $(\alpha \boldsymbol{a} + \beta \boldsymbol{b}) \wedge \boldsymbol{c} = \alpha \boldsymbol{a} \wedge \boldsymbol{c} + \beta \boldsymbol{b} \wedge \boldsymbol{c}$ $\forall \alpha, \beta \in \mathbb{R} \text{ and } \forall \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in V$ 3. $\boldsymbol{a} \cdot (\boldsymbol{a} \wedge \boldsymbol{b}) = 0$ $\forall \boldsymbol{a}, \boldsymbol{b} \in V$ 4. $(\boldsymbol{a} \wedge \boldsymbol{b}) \cdot (\boldsymbol{a} \wedge \boldsymbol{b}) = (\boldsymbol{a} \cdot \boldsymbol{a})(\boldsymbol{b} \cdot \boldsymbol{b}) - (\boldsymbol{a} \cdot \boldsymbol{b})^2$ $\forall \boldsymbol{a}, \boldsymbol{b} \in V$

The vector product we are most familiar with is the standard cross-product which is often denoted by the alternate symbol \times .