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Elastic-Perfectly Plastic Thick Walled Sphere

Consider a thick walled sphere made of an elastic perfectly plastic material
that is governed by von Mises’ yield condition. Assume the sphere is subject
to an internal pressure pi and an external pressure po. Since the problem is
spherically symmetric there is only one non-trivial equilibrium equation

σrr,r =
2

r
(σθθ − σrr) . (1)

Note that
σϕϕ = σθθ (2)

by symmetry. In this case the strain displacement relations reduced down to

εrr = ur,r (3)

εθθ = εϕϕ = ur/r . (4)

The relevant elastic constitutive relations are

εrr =
1

E
[σrr − 2νσθθ] (5)

εθθ =
1

E
[(1− ν)σθθ − νσrr] . (6)

A compatibility equation1 in this setting can derived by combining (3) and
(4) to give

εθθ,r = (εrr − εθθ)/r . (7)

The boundary conditions maybe expressed as

σer = −poer at r = ro
σ(−er) = pier at r = ri .

(8)

1Relation between strains eliminating displacements but still guaranteeing that the
strains are the symmetric gradient of a single-valued displacement field
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Since we have pure traction boundary conditions, this problem can be
attacked as a pure stress problem.

Step 1: Begin by deriving a simplified Beltrami-Mitchell equation2. Plug
(5) and (6) into (7), and use the facts from equilibrium that (σrr − σθθ)/r =
1
2
σrr,r and σθθ,r = ( r

2
σrr,r + σrr),r. The net result is that

0 = rσrr,rr + 4σrr,r
= (rσrr,r),r + 3σrr,r .

(9)

Step 2: Solve the compatibility equation (9) for the radial stress. Inte-
grating twice gives

σrr = CE +DEr
−3 , (10)

where CE and DE are constants of integration.

Step 3: Use equilibrium to get the hoop stresses.

−3DEr
−4 =

2

r
[σθθ −DEr

−3 − CE] ;

which implies that

σθθ = σϕϕ = CE −
DE

2
r−3 . (11)

Step 4: Apply the boundary conditions to determine the constants.

CE +DE/r
3
i = −pi

CE +DE/r
3
o = −po .

Solving for CE and DE gives

CE =
por

3
o − pir3i
r3i − r3o

DE = −(pi − po)
r3i r

3
o

r3o − r3i
.

(12)

Step 5: Determine the displacements by using (6) and (4). This gives

ur = rεθθ =
r

E
(σθθ(1− ν)− νσrr) .

2The compatibility equation written in terms of stresses
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Inserting from above for the stresses gives

ur =
r

E

[
(1− 2ν)CE +

1− 3ν

2
DEr

−3

]
. (13)

Step 6: Determine the condition for yield. von Mises’ condition in this
case reduces to

1

2
{(σrr − σθθ)2 + (σrr − σϕϕ)2 + (σθθ − σϕϕ)2} ≤ σ2

Y .

If we plug in the elastic expressions for the stress from above we see that(
3

2
DEr

−3

)2

≤ σ2
Y .

Plugging in (12)2 gives

|pi − po|
r3

≤ 2

3
σY
r3o − r3i
r3i r

3
o

.

This expression show that yielding will first occur on the inner wall of the
sphere. Therefore the yielding will first occur when

|pi − po| =
2

3
σY
r3o − r3i
r3o

. (14)

Step 7: Suppose, now, yielding has progressed to r = R. The region r ≥ R
is still elastic; therefore, the original solution still holds but with modified
boundary conditions

σrr = −po at r = ro

and
σθθ − σrr = σY at r = R .

This last expression is the condition on the stresses when yield is occuring.
If we resolve for the constants, now called, Cp and Dp, then we find that

Cp = −po +
2

3
σY

(
R

ro

)3

(15)

Dp = −2

3
σYR

3 (16)
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Thus in the region r ≥ R

σrr = −po +
2

3
σY

(
R

r

)3
[(

r

ro

)3

− 1

]

σθθ = −po +
2

3
σY

(
R

r

)3
[(

r

ro

)3

− 1

2

]
.

To determine the strains in this region simply apply the constitutive relations.
For the displacements in this region, note that Eq. (13) still holds using
expression (15) and (16) for the constants.

Step 8: To determine the stresses in the plastic zone, first note that the
von Mises condition tells us that for states on the yield surface that

σθθ − σrr = σY .

If we plug this into the equilibrium equation then we have in the region r ≤ R
that

σrr,r = 2σY /r .

Solving this equation gives

σrr = 2σY ln(r) + Ĉ .

At the inner radius the boundary condition states that σrr = −pi. Thus,
we have that Ĉ = −pi − 2σY ln(ri). This gives the stress state in the region
r ≤ R as

σrr = 2σY ln
(
r
ri

)
− pi

σθθ = σϕϕ = σY

[
1 + 2 ln

(
r
ri

)]
− pi .

(17)

Note that the last expression comes from the von Mises expression; do not
forget that perfect plasticity is being assumed and that the pressure differ-
ential is being assumed to be monotonically increasing.

Step 9: Find the value of R for a given pressure differential. This is done
by requiring traction continuity at the interface between elastic and plastic
regions. In the present case the normal to the interface between the regions
is simply er. Thus, at r = R we must have

σelasticer = σplasticer .
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Since all the shear stresses are zero in this problem, we simply need to match
σrr at the interface. This gives

2σY ln

(
R

ri

)
− pi = −po +

2

3
σY

(
R

R

)3
[(

R

ro

)3

− 1

]
.

Thus, we can say that

pi − po = 2σY

[
ln

(
R

ri

)
+

1

3

(
1−

(
R

ro

)3
)]

(18)

is a nonlinear equation that determines the value of R for a given pressure
differential. Note that the sphere is fully plastic where

pi − po = 2σY ln

(
ro
ri

)
. (19)

Step 10: To determine the displacements ur for the region r ≤ R is a bit
more complex. However since plasticity (J2) only occurs in the deviatoric
portion of the response we can take advantage of the fact that the bulk
response is still elastic. Thus, we still have in this region that

(εrr + 2εθθ) =
1

3K
(σrr + 2σθθ) .

We can now apply the strain-displacement relations and (17) to give the
ordinary differential equation

1

r2
(r2ur),r =

2σY
3K

(1 + 3 ln(r/ri)− (3/2)pi/σY ) .

This ODE can be solved for the displacement field. Note that in integrating
this expression, the constant of integration can be eliminated by enforcing
continuity of displacement at the interface between the elastic and plastic
zones.
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