UNIVERSITY OF CALIFORNIA BERKELEY	Structural Engineering,
Department of Civil Engineering	Mechanics and Materials
Fall 2010	Professor: S. Govindjee

Geometry of the π-plane

In the isotropic setting, a state of stress can be visualized in terms of its eigenvalues; i.e. it can plotted as a point in \mathbb{R}^{3} where the coordinate axes represent the three principal values. The deviatoric part of the stress is then given by the three (principal) values $\left(s_{1}, s_{2}, s_{3}\right)=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)-\frac{1}{3}\left(\sigma_{1}+\right.$ $\left.\sigma_{2}+\sigma_{3}\right)(1,1,1)$. Deviatoric stresses in this setting satisfy the constraint $s_{1}+s_{2}+s_{3}=0$ and thus are representable by points in a two dimensional space. This two dimensional space is the π-plane.

For effective visualization of deviatoric quantities one needs to understand the basic geometry of the π-plane. The plane is one with a principal stress space normal in the $(1,1,1)$ direction. When the coordinate axes (the axes of principal stress values) are projected into this plane they appear as 3 rays separated by $2 \pi / 3 \mathrm{rad}$ (or 120 degrees). A projection of an arbitrary stress state into the π-plane is given by $\vec{s}=\vec{\sigma}-(\vec{\sigma} \cdot \vec{n}) \vec{n}$ where $\vec{n}=(1,1,1) / \sqrt{3}$. If we take the third principal axis as the 'vertical' axis in the plane then the unit vector in the vertical direction is given by $\vec{y}=(-1 / 3,-1 / 3,2 / 3) / \sqrt{6 / 9}$. The 'horizontal' direction in the plane is then given by $\vec{x}=\vec{y} \times \vec{n}=(-1,1,0) / \sqrt{2}$. Thus given an arbitrary stress state $\vec{\sigma}$, its coordinates in the π-plane are given by $(\vec{x} \cdot \vec{\sigma}, \vec{y} \cdot \vec{\sigma})$.

In the figure below we show the projections of the three principal axes, the horizontal and vertical axes (of the π-plane), as well as the intersection of the π-plane with a von Mises cylinder of radius 2, and two different states of stress projected onto the plane.

